Properties

Label 198744bp
Number of curves $1$
Conductor $198744$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198744bp1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198744bp do not have complex multiplication.

Modular form 198744.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - 3 q^{11} + q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198744bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198744.r1 198744bp1 \([0, -1, 0, 6704, 475084]\) \(68782/243\) \(-117704324634624\) \([]\) \(518400\) \(1.3829\) \(\Gamma_0(N)\)-optimal