Properties

Label 198550bs
Number of curves $1$
Conductor $198550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 198550bs1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198550bs do not have complex multiplication.

Modular form 198550.2.a.bs

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} + q^{4} + 3 q^{6} + 3 q^{7} - q^{8} + 6 q^{9} - q^{11} - 3 q^{12} - q^{13} - 3 q^{14} + q^{16} - q^{17} - 6 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 198550bs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198550.a1 198550bs1 \([1, -1, 0, -34309531942, -2834476013502284]\) \(-6076121652651798651688569/1205338112000000000000\) \(-886034271592448000000000000000000\) \([]\) \(1542758400\) \(5.0450\) \(\Gamma_0(N)\)-optimal