Properties

Label 19800.bl
Number of curves $1$
Conductor $19800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 19800.bl1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19800.bl do not have complex multiplication.

Modular form 19800.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + q^{11} + q^{13} + 4 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 19800.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19800.bl1 19800bj1 \([0, 0, 0, -795, 9110]\) \(-1488770/99\) \(-3695155200\) \([]\) \(7680\) \(0.58798\) \(\Gamma_0(N)\)-optimal