Properties

Label 198.c
Number of curves $4$
Conductor $198$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 198.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198.c do not have complex multiplication.

Modular form 198.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{5} - 2 q^{7} - q^{8} - 4 q^{10} - q^{11} + 4 q^{13} + 2 q^{14} + q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 198.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198.c1 198e3 \([1, -1, 0, -90585, 10516473]\) \(112763292123580561/1932612\) \(1408874148\) \([2]\) \(800\) \(1.2972\)  
198.c2 198e4 \([1, -1, 0, -90495, 10538343]\) \(-112427521449300721/466873642818\) \(-340350885614322\) \([2]\) \(1600\) \(1.6437\)  
198.c3 198e1 \([1, -1, 0, -405, -2187]\) \(10091699281/2737152\) \(1995383808\) \([2]\) \(160\) \(0.49244\) \(\Gamma_0(N)\)-optimal
198.c4 198e2 \([1, -1, 0, 1035, -15147]\) \(168105213359/228637728\) \(-166676903712\) \([2]\) \(320\) \(0.83901\)