Show commands: SageMath
Rank
The elliptic curves in class 1968g have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1968g do not have complex multiplication.Modular form 1968.2.a.g
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1968g
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1968.g1 | 1968g1 | \([0, -1, 0, -24, -144]\) | \(-389017/2214\) | \(-9068544\) | \([]\) | \(480\) | \(0.018942\) | \(\Gamma_0(N)\)-optimal |
| 1968.g2 | 1968g2 | \([0, -1, 0, 216, 3696]\) | \(270840023/1654104\) | \(-6775209984\) | \([]\) | \(1440\) | \(0.56825\) |