Properties

Label 194040.n
Number of curves $1$
Conductor $194040$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 194040.n1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 194040.n do not have complex multiplication.

Modular form 194040.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{11} - q^{13} + 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 194040.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
194040.n1 194040ff1 \([0, 0, 0, 252, -28]\) \(5225472/3025\) \(-1024531200\) \([]\) \(82944\) \(0.41842\) \(\Gamma_0(N)\)-optimal