Properties

Label 194040.ec
Number of curves $4$
Conductor $194040$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ec1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 194040.ec have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 194040.ec do not have complex multiplication.

Modular form 194040.2.a.ec

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{11} - 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 194040.ec

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
194040.ec1 194040a4 \([0, 0, 0, -3328227, -120263346]\) \(46424454082884/26794860125\) \(2353245404834636928000\) \([2]\) \(10616832\) \(2.7904\)  
194040.ec2 194040a2 \([0, 0, 0, -2225727, 1273517154]\) \(55537159171536/228765625\) \(5022807110244000000\) \([2, 2]\) \(5308416\) \(2.4438\)  
194040.ec3 194040a1 \([0, 0, 0, -2223522, 1276175061]\) \(885956203616256/15125\) \(20755401282000\) \([2]\) \(2654208\) \(2.0972\) \(\Gamma_0(N)\)-optimal
194040.ec4 194040a3 \([0, 0, 0, -1158507, 2497191606]\) \(-1957960715364/29541015625\) \(-2594425160250000000000\) \([2]\) \(10616832\) \(2.7904\)