Properties

Label 193600im
Number of curves $2$
Conductor $193600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("im1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 193600im have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193600im do not have complex multiplication.

Modular form 193600.2.a.im

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} + 4 q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 193600im

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193600.gq1 193600im1 \([0, 1, 0, -117616033, -498951343937]\) \(-1693700041/32000\) \(-3399670117302272000000000\) \([]\) \(29196288\) \(3.5018\) \(\Gamma_0(N)\)-optimal
193600.gq2 193600im2 \([0, 1, 0, 468023967, -2332590183937]\) \(106718863559/83886080\) \(-8912031232300867911680000000\) \([]\) \(87588864\) \(4.0511\)