Properties

Label 193600.it
Number of curves $1$
Conductor $193600$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("it1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 193600.it1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193600.it do not have complex multiplication.

Modular form 193600.2.a.it

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 3 q^{7} + q^{9} + 4 q^{13} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 193600.it

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193600.it1 193600ex1 \([0, -1, 0, -100833, 11909537]\) \(24200\) \(4685120000000000\) \([]\) \(1105920\) \(1.7722\) \(\Gamma_0(N)\)-optimal