Properties

Label 193550.p
Number of curves $4$
Conductor $193550$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 193550.p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193550.p do not have complex multiplication.

Modular form 193550.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 3 q^{9} - 4 q^{11} - 2 q^{13} + q^{16} + 2 q^{17} + 3 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 193550.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193550.p1 193550co4 \([1, -1, 0, -4190342, -3298187684]\) \(4426535117697057/3643354232\) \(6697452844383875000\) \([2]\) \(4718592\) \(2.5410\)  
193550.p2 193550co3 \([1, -1, 0, -2720342, 1708730316]\) \(1211116876909857/15268431752\) \(28067433237360125000\) \([2]\) \(4718592\) \(2.5410\)  
193550.p3 193550co2 \([1, -1, 0, -319342, -27192684]\) \(1959225089697/959017024\) \(1762928029009000000\) \([2, 2]\) \(2359296\) \(2.1944\)  
193550.p4 193550co1 \([1, -1, 0, 72658, -3280684]\) \(23076099423/15855616\) \(-29146833856000000\) \([2]\) \(1179648\) \(1.8479\) \(\Gamma_0(N)\)-optimal