Properties

Label 19350.bk
Number of curves $4$
Conductor $19350$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19350.bk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19350.bk do not have complex multiplication.

Modular form 19350.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{7} - q^{8} - 2 q^{13} - 4 q^{14} + q^{16} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 2 & 6 \\ 3 & 1 & 6 & 2 \\ 2 & 6 & 1 & 3 \\ 6 & 2 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 19350.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19350.bk1 19350c4 \([1, -1, 0, -8318067, 8734950341]\) \(206956783279200843/12642726098000\) \(3888230902920843750000\) \([2]\) \(1327104\) \(2.8947\)  
19350.bk2 19350c2 \([1, -1, 0, -8192067, 9026864341]\) \(144118734029937784467/37867520\) \(15975360000000\) \([2]\) \(442368\) \(2.3454\)  
19350.bk3 19350c3 \([1, -1, 0, -1568067, -586799659]\) \(1386456968640843/318028000000\) \(97808517562500000000\) \([2]\) \(663552\) \(2.5482\)  
19350.bk4 19350c1 \([1, -1, 0, -512067, 141104341]\) \(35198225176082067/18035507200\) \(7608729600000000\) \([2]\) \(221184\) \(1.9989\) \(\Gamma_0(N)\)-optimal