Properties

Label 193344cn
Number of curves $1$
Conductor $193344$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 193344cn1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(19\)\(1 - T\)
\(53\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193344cn do not have complex multiplication.

Modular form 193344.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{7} + q^{9} + 4 q^{11} - 2 q^{13} - q^{15} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 193344cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193344.cy1 193344cn1 \([0, 1, 0, -378881, -89885217]\) \(91781131747461124/6186285981\) \(405424438050816\) \([]\) \(1247232\) \(1.8580\) \(\Gamma_0(N)\)-optimal