Properties

Label 193344.ct
Number of curves $1$
Conductor $193344$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ct1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 193344.ct1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(19\)\(1 - T\)
\(53\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193344.ct do not have complex multiplication.

Modular form 193344.2.a.ct

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 3 q^{7} + q^{9} + 4 q^{13} - q^{15} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 193344.ct

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193344.ct1 193344l1 \([0, 1, 0, -161, 351]\) \(7086244/3021\) \(197984256\) \([]\) \(47104\) \(0.28856\) \(\Gamma_0(N)\)-optimal