Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
192.a1 |
192a3 |
192.a |
192a |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( 2^{15} \cdot 3 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.53 |
2B |
$24$ |
$48$ |
$0$ |
$1.351603734$ |
$1$ |
|
$9$ |
$32$ |
$-0.079647$ |
$7301384/3$ |
$1.03749$ |
$4.98351$ |
$[0, -1, 0, -129, 609]$ |
\(y^2=x^3-x^2-129x+609\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.m.1.1, 24.48.0-24.bi.1.2 |
$[(8, 5)]$ |
192.a2 |
192a2 |
192.a |
192a |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.4 |
2Cs |
$24$ |
$48$ |
$0$ |
$0.675801867$ |
$1$ |
|
$13$ |
$16$ |
$-0.426220$ |
$21952/9$ |
$1.09175$ |
$3.48348$ |
$[0, -1, 0, -9, 9]$ |
\(y^2=x^3-x^2-9x+9\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.2, 12.24.0-12.a.1.3, 24.48.0-24.f.1.8 |
$[(5, 8)]$ |
192.a3 |
192a1 |
192.a |
192a |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.102 |
2B |
$24$ |
$48$ |
$0$ |
$1.351603734$ |
$1$ |
|
$3$ |
$8$ |
$-0.772794$ |
$140608/3$ |
$1.02705$ |
$3.04567$ |
$[0, -1, 0, -4, -2]$ |
\(y^2=x^3-x^2-4x-2\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.5, 12.12.0.h.1, 24.48.0-24.bk.1.3 |
$[(3, 2)]$ |
192.a4 |
192a4 |
192.a |
192a |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( - 2^{15} \cdot 3^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.59 |
2B |
$24$ |
$48$ |
$0$ |
$0.337900933$ |
$1$ |
|
$11$ |
$32$ |
$-0.079647$ |
$97336/81$ |
$1.05989$ |
$4.16227$ |
$[0, -1, 0, 31, 33]$ |
\(y^2=x^3-x^2+31x+33\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.d.1.1, 24.48.0-24.n.1.2 |
$[(1, 8)]$ |
192.b1 |
192d5 |
192.b |
192d |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{17} \cdot 3^{2} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.113 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$64$ |
$0.394369$ |
$3065617154/9$ |
$1.21059$ |
$6.39601$ |
$[0, -1, 0, -1537, 23713]$ |
\(y^2=x^3-x^2-1537x+23713\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.r.1.5, 16.96.0-16.l.1.5, 24.96.0-24.bf.1.1, $\ldots$ |
$[]$ |
192.b2 |
192d3 |
192.b |
192d |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{16} \cdot 3 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.280 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$32$ |
$0.047795$ |
$28756228/3$ |
$1.05617$ |
$5.37608$ |
$[0, -1, 0, -257, -1503]$ |
\(y^2=x^3-x^2-257x-1503\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.2.2, 12.12.0.h.1, 16.96.0-16.bb.2.2, $\ldots$ |
$[]$ |
192.b3 |
192d4 |
192.b |
192d |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{16} \cdot 3^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.15 |
2Cs |
$24$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$32$ |
$0.047795$ |
$1556068/81$ |
$1.03212$ |
$4.82131$ |
$[0, -1, 0, -97, 385]$ |
\(y^2=x^3-x^2-97x+385\) |
2.6.0.a.1, 4.24.0-4.b.1.2, 8.96.0-8.e.2.6, 24.192.1-24.bl.2.7 |
$[]$ |
192.b4 |
192d2 |
192.b |
192d |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.144 |
2Cs |
$24$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$16$ |
$-0.298779$ |
$35152/9$ |
$0.97255$ |
$3.83671$ |
$[0, -1, 0, -17, -15]$ |
\(y^2=x^3-x^2-17x-15\) |
2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.h.1.5, 12.24.0.c.1, 24.192.1-24.bu.1.5 |
$[]$ |
192.b5 |
192d1 |
192.b |
192d |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( - 2^{10} \cdot 3 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.300 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$8$ |
$-0.645352$ |
$2048/3$ |
$1.17572$ |
$2.84968$ |
$[0, -1, 0, 3, -3]$ |
\(y^2=x^3-x^2+3x-3\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.48.0-8.ba.1.6, 12.12.0.g.1, $\ldots$ |
$[]$ |
192.b6 |
192d6 |
192.b |
192d |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( - 2^{17} \cdot 3^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.170 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$0.394369$ |
$207646/6561$ |
$1.15980$ |
$5.32737$ |
$[0, -1, 0, 63, 1377]$ |
\(y^2=x^3-x^2+63x+1377\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.96.0-8.m.1.3, 48.192.1-48.w.2.5 |
$[]$ |
192.c1 |
192b3 |
192.c |
192b |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( 2^{15} \cdot 3 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.63 |
2B |
$24$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$32$ |
$-0.079647$ |
$7301384/3$ |
$1.03749$ |
$4.98351$ |
$[0, 1, 0, -129, -609]$ |
\(y^2=x^3+x^2-129x-609\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.m.1.3, 24.48.0-24.bi.1.1 |
$[]$ |
192.c2 |
192b2 |
192.c |
192b |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.3 |
2Cs |
$24$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$16$ |
$-0.426220$ |
$21952/9$ |
$1.09175$ |
$3.48348$ |
$[0, 1, 0, -9, -9]$ |
\(y^2=x^3+x^2-9x-9\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.1, 12.24.0-12.a.1.3, 24.48.0-24.f.1.5 |
$[]$ |
192.c3 |
192b1 |
192.c |
192b |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.104 |
2B |
$24$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8$ |
$-0.772794$ |
$140608/3$ |
$1.02705$ |
$3.04567$ |
$[0, 1, 0, -4, 2]$ |
\(y^2=x^3+x^2-4x+2\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.7, 12.12.0.h.1, 24.48.0-24.bk.1.2 |
$[]$ |
192.c4 |
192b4 |
192.c |
192b |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \) |
\( - 2^{15} \cdot 3^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.48 |
2B |
$24$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$32$ |
$-0.079647$ |
$97336/81$ |
$1.05989$ |
$4.16227$ |
$[0, 1, 0, 31, -33]$ |
\(y^2=x^3+x^2+31x-33\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.d.1.2, 24.48.0-24.n.1.4 |
$[]$ |
192.d1 |
192c5 |
192.d |
192c |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{17} \cdot 3^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.155 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$0.394369$ |
$3065617154/9$ |
$1.21059$ |
$6.39601$ |
$[0, 1, 0, -1537, -23713]$ |
\(y^2=x^3+x^2-1537x-23713\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.r.1.1, 16.96.0-16.l.1.1, 24.96.0-24.bf.1.5, $\ldots$ |
$[]$ |
192.d2 |
192c4 |
192.d |
192c |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{16} \cdot 3 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.220 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$32$ |
$0.047795$ |
$28756228/3$ |
$1.05617$ |
$5.37608$ |
$[0, 1, 0, -257, 1503]$ |
\(y^2=x^3+x^2-257x+1503\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.2.1, 12.12.0.h.1, 16.96.0-16.bb.2.1, $\ldots$ |
$[]$ |
192.d3 |
192c3 |
192.d |
192c |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{16} \cdot 3^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.9 |
2Cs |
$24$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$32$ |
$0.047795$ |
$1556068/81$ |
$1.03212$ |
$4.82131$ |
$[0, 1, 0, -97, -385]$ |
\(y^2=x^3+x^2-97x-385\) |
2.6.0.a.1, 4.24.0-4.b.1.2, 8.96.0-8.e.2.5, 24.192.1-24.bl.2.5 |
$[]$ |
192.d4 |
192c2 |
192.d |
192c |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.124 |
2Cs |
$24$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$16$ |
$-0.298779$ |
$35152/9$ |
$0.97255$ |
$3.83671$ |
$[0, 1, 0, -17, 15]$ |
\(y^2=x^3+x^2-17x+15\) |
2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.h.1.1, 12.24.0.c.1, 24.192.1-24.bu.1.3 |
$[]$ |
192.d5 |
192c1 |
192.d |
192c |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( - 2^{10} \cdot 3 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.263 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$8$ |
$-0.645352$ |
$2048/3$ |
$1.17572$ |
$2.84968$ |
$[0, 1, 0, 3, 3]$ |
\(y^2=x^3+x^2+3x+3\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.48.0-8.ba.1.5, 12.12.0.g.1, $\ldots$ |
$[]$ |
192.d6 |
192c6 |
192.d |
192c |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \) |
\( - 2^{17} \cdot 3^{8} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.159 |
2B |
$48$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$64$ |
$0.394369$ |
$207646/6561$ |
$1.15980$ |
$5.32737$ |
$[0, 1, 0, 63, -1377]$ |
\(y^2=x^3+x^2+63x-1377\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.96.0-8.m.1.1, 48.192.1-48.w.2.7 |
$[]$ |