Properties

Label 19133b
Number of curves $1$
Conductor $19133$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 19133b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(19\)\(1\)
\(53\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19133b do not have complex multiplication.

Modular form 19133.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - 3 q^{5} - q^{7} - 3 q^{9} + 6 q^{10} + 3 q^{11} + 2 q^{14} - 4 q^{16} - 3 q^{17} + 6 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 19133b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19133.a1 19133b1 \([0, 0, 1, 22021, 718480]\) \(25102282752/19266931\) \(-906429743061211\) \([]\) \(99360\) \(1.5581\) \(\Gamma_0(N)\)-optimal