Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-1643x+16706\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-1643xz^2+16706z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2128707x+785832894\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(60, 337)$ | $0.67582036889141920210386465359$ | $\infty$ |
$(-45, 22)$ | $0$ | $2$ |
$(11, -6)$ | $0$ | $2$ |
Integral points
\( \left(-45, 22\right) \), \( \left(-15, 202\right) \), \( \left(-15, -188\right) \), \( \left(-3, 148\right) \), \( \left(-3, -146\right) \), \( \left(11, -6\right) \), \( \left(36, 49\right) \), \( \left(36, -86\right) \), \( \left(60, 337\right) \), \( \left(60, -398\right) \), \( \left(102, 904\right) \), \( \left(102, -1007\right) \), \( \left(830, 23472\right) \), \( \left(830, -24303\right) \)
Invariants
Conductor: | $N$ | = | \( 19110 \) | = | $2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $161049716100$ | = | $2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{4165509529}{1368900} \) | = | $2^{-2} \cdot 3^{-4} \cdot 5^{-2} \cdot 13^{-2} \cdot 1609^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.85341402709643905182392554588$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.11954104743121760072875082584$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9227266645673144$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.431292193161856$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.67582036889141920210386465359$ |
|
Real period: | $\Omega$ | ≈ | $0.94300043884001110537264025019$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.0983912355330119770510514412 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.098391236 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.943000 \cdot 0.675820 \cdot 128}{4^2} \\ & \approx 5.098391236\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 24576 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 3119 & 0 \\ 0 & 3639 \end{array}\right),\left(\begin{array}{rr} 1821 & 3122 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1163 & 3122 \\ 3038 & 519 \end{array}\right),\left(\begin{array}{rr} 3637 & 4 \\ 3636 & 5 \end{array}\right),\left(\begin{array}{rr} 1457 & 2604 \\ 2394 & 1569 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 911 & 3122 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$811550638080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 49 = 7^{2} \) |
$3$ | split multiplicative | $4$ | \( 6370 = 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $26$ | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 19110bh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 390a2, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{10}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{14}, \sqrt{-26})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{35}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | split | add | ss | split | ord | ss | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 5 | 6 | 2 | - | 1,1 | 2 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.