Properties

Label 19110.p
Number of curves $4$
Conductor $19110$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19110.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19110.p do not have complex multiplication.

Modular form 19110.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} + 6 q^{11} - q^{12} - q^{13} - q^{15} + q^{16} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 19110.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19110.p1 19110l3 \([1, 1, 0, -2522202, 1540712916]\) \(15082569606665230489/7751016000\) \(911899281384000\) \([2]\) \(497664\) \(2.2026\)  
19110.p2 19110l4 \([1, 1, 0, -2508482, 1558321164]\) \(-14837772556740428569/342100087875000\) \(-40247733238405875000\) \([2]\) \(995328\) \(2.5492\)  
19110.p3 19110l1 \([1, 1, 0, -37167, 1222929]\) \(48264326765929/22299191460\) \(2623477576077540\) \([2]\) \(165888\) \(1.6533\) \(\Gamma_0(N)\)-optimal
19110.p4 19110l2 \([1, 1, 0, 130903, 9391131]\) \(2108526614950391/1540302022350\) \(-181214992627455150\) \([2]\) \(331776\) \(1.9999\)