Properties

Label 19110.b
Number of curves $4$
Conductor $19110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 19110.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19110.b do not have complex multiplication.

Modular form 19110.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} - q^{12} - q^{13} + q^{15} + q^{16} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 19110.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19110.b1 19110c4 \([1, 1, 0, -42756298, 107590373332]\) \(73474353581350183614361/576510977802240\) \(67825940027455733760\) \([2]\) \(1555200\) \(2.9783\)  
19110.b2 19110c3 \([1, 1, 0, -2615498, 1755140052]\) \(-16818951115904497561/1592332281446400\) \(-187336300579887513600\) \([2]\) \(777600\) \(2.6318\)  
19110.b3 19110c2 \([1, 1, 0, -784123, -10387523]\) \(453198971846635561/261896250564000\) \(30811831982604036000\) \([2]\) \(518400\) \(2.4290\)  
19110.b4 19110c1 \([1, 1, 0, 195877, -1175523]\) \(7064514799444439/4094064000000\) \(-481662535536000000\) \([2]\) \(259200\) \(2.0825\) \(\Gamma_0(N)\)-optimal