Properties

Label 190400.eq
Number of curves $1$
Conductor $190400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 190400.eq1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 190400.eq do not have complex multiplication.

Modular form 190400.2.a.eq

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{7} + q^{9} + 5 q^{11} - 2 q^{13} - q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 190400.eq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
190400.eq1 190400ce1 \([0, -1, 0, -1793, 30017]\) \(-778604360/5831\) \(-4776755200\) \([]\) \(138240\) \(0.68789\) \(\Gamma_0(N)\)-optimal