Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-317269x+169633437\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-317269xz^2+169633437z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-25698816x+123585679152\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(204, 10647)$ | $2.4115724358413713128037661684$ | $\infty$ |
Integral points
\((204,\pm 10647)\)
Invariants
| Conductor: | $N$ | = | \( 18928 \) | = | $2^{4} \cdot 7 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-10371600362908954624$ | = | $-1 \cdot 2^{12} \cdot 7^{9} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{178643795968}{524596891} \) | = | $-1 \cdot 2^{27} \cdot 7^{-9} \cdot 11^{3} \cdot 13^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3357257009071563312440565576$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.36010384161644265380008071536$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1502342302824948$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.221174170215314$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4115724358413713128037661684$ |
|
| Real period: | $\Omega$ | ≈ | $0.20113527037652746556837431281$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 18 $ = $ 1\cdot3^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.7309409304796327625129645290 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.730940930 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.201135 \cdot 2.411572 \cdot 18}{1^2} \\ & \approx 8.730940930\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 435456 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
| $7$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
| $13$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 3259 & 18 \\ 3258 & 19 \end{array}\right),\left(\begin{array}{rr} 1655 & 3258 \\ 1656 & 3257 \end{array}\right),\left(\begin{array}{rr} 1760 & 3267 \\ 1773 & 1658 \end{array}\right),\left(\begin{array}{rr} 1637 & 0 \\ 0 & 3275 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 2798 & 3267 \\ 3051 & 1646 \end{array}\right),\left(\begin{array}{rr} 3275 & 3258 \\ 0 & 2365 \end{array}\right)$.
The torsion field $K:=\Q(E[3276])$ is a degree-$136949170176$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3276\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 1183 = 7 \cdot 13^{2} \) |
| $3$ | good | $2$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
| $7$ | split multiplicative | $8$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 112 = 2^{4} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 18928bb
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 91b3, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{39}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.364.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.12057136.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.17323046208.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.6.467722247616.2 | \(\Z/9\Z\) | not in database |
| $6$ | 6.2.744097536.2 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | 12.0.1294462135591495962624.5 | \(\Z/9\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.39141819111582098990703854519511416832.1 | \(\Z/6\Z\) | not in database |
| $18$ | 18.6.770428425573270454434023968507543217504256.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | split | ss | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | 1 | 2 | 1,1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.