Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
91.b1 |
91b3 |
91.b |
91b |
$3$ |
$9$ |
\( 7 \cdot 13 \) |
\( - 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$1638$ |
$144$ |
$3$ |
$0.117693898$ |
$1$ |
|
$10$ |
$36$ |
$0.360104$ |
$-178643795968/524596891$ |
$1.15023$ |
$6.14356$ |
$[0, 1, 1, -117, -1245]$ |
\(y^2+y=x^3+x^2-117x-1245\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 117.72.0.?, 182.2.0.?, 546.16.0.?, $\ldots$ |
$[(15, 24)]$ |
637.b1 |
637b3 |
637.b |
637b |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$1.333059$ |
$-178643795968/524596891$ |
$1.15023$ |
$6.10029$ |
$[0, -1, 1, -5749, 415463]$ |
\(y^2+y=x^3-x^2-5749x+415463\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 78.8.0.?, $\ldots$ |
$[ ]$ |
819.c1 |
819e3 |
819.c |
819e |
$3$ |
$9$ |
\( 3^{2} \cdot 7 \cdot 13 \) |
\( - 3^{6} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.1 |
3B.1.1 |
$1638$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$2$ |
$864$ |
$0.909410$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.11389$ |
$[0, 0, 1, -1056, 32553]$ |
\(y^2+y=x^3-1056x+32553\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 117.72.0.?, 182.2.0.?, 546.16.0.?, $\ldots$ |
$[ ]$ |
1183.a1 |
1183a3 |
1183.a |
1183a |
$3$ |
$9$ |
\( 7 \cdot 13^{2} \) |
\( - 7^{9} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$5.009921908$ |
$1$ |
|
$2$ |
$6048$ |
$1.642578$ |
$-178643795968/524596891$ |
$1.15023$ |
$6.09152$ |
$[0, 1, 1, -19829, -2655480]$ |
\(y^2+y=x^3+x^2-19829x-2655480\) |
3.4.0.a.1, 9.12.0.a.1, 39.8.0-3.a.1.2, 42.8.0-3.a.1.1, 117.72.0.?, $\ldots$ |
$[(1850, 79345)]$ |
1456.k1 |
1456h3 |
1456.k |
1456h |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$4.303018462$ |
$1$ |
|
$2$ |
$2592$ |
$1.053251$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.94690$ |
$[0, -1, 0, -1877, 77789]$ |
\(y^2=x^3-x^2-1877x+77789\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[(-20, 327)]$ |
2275.d1 |
2275a3 |
2275.d |
2275a |
$3$ |
$9$ |
\( 5^{2} \cdot 7 \cdot 13 \) |
\( - 5^{6} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$8190$ |
$144$ |
$3$ |
$11.61313920$ |
$1$ |
|
$0$ |
$3888$ |
$1.164824$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.83449$ |
$[0, -1, 1, -2933, -149732]$ |
\(y^2+y=x^3-x^2-2933x-149732\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[(72988/31, 7273216/31)]$ |
5733.f1 |
5733f3 |
5733.f |
5733f |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{6} \cdot 7^{15} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$2.065139480$ |
$1$ |
|
$0$ |
$41472$ |
$1.882364$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.31314$ |
$[0, 0, 1, -51744, -11165765]$ |
\(y^2+y=x^3-51744x-11165765\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 78.8.0.?, $\ldots$ |
$[(9079/5, 529358/5)]$ |
5824.f1 |
5824s3 |
5824.f |
5824s |
$3$ |
$9$ |
\( 2^{6} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.706677$ |
$-178643795968/524596891$ |
$1.15023$ |
$3.67619$ |
$[0, 1, 0, -469, 9489]$ |
\(y^2=x^3+x^2-469x+9489\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
5824.bd1 |
5824j3 |
5824.bd |
5824j |
$3$ |
$9$ |
\( 2^{6} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.706677$ |
$-178643795968/524596891$ |
$1.15023$ |
$3.67619$ |
$[0, -1, 0, -469, -9489]$ |
\(y^2=x^3-x^2-469x-9489\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
8281.h1 |
8281d3 |
8281.h |
8281d |
$3$ |
$9$ |
\( 7^{2} \cdot 13^{2} \) |
\( - 7^{15} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$290304$ |
$2.615532$ |
$-178643795968/524596891$ |
$1.15023$ |
$6.07178$ |
$[0, -1, 1, -971637, 908886292]$ |
\(y^2+y=x^3-x^2-971637x+908886292\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[ ]$ |
10192.g1 |
10192bb3 |
10192.g |
10192bb |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 7^{15} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$14.86826160$ |
$1$ |
|
$0$ |
$124416$ |
$2.026207$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.16894$ |
$[0, 1, 0, -91989, -26497661]$ |
\(y^2=x^3+x^2-91989x-26497661\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 117.36.0.?, 156.8.0.?, $\ldots$ |
$[(16348270/131, 61620762273/131)]$ |
10647.f1 |
10647c3 |
10647.f |
10647c |
$3$ |
$9$ |
\( 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 7^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$145152$ |
$2.191883$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.35899$ |
$[0, 0, 1, -178464, 71519490]$ |
\(y^2+y=x^3-178464x+71519490\) |
3.4.0.a.1, 9.12.0.a.1, 39.8.0-3.a.1.1, 42.8.0-3.a.1.2, 117.72.0.?, $\ldots$ |
$[ ]$ |
11011.f1 |
11011c3 |
11011.f |
11011c |
$3$ |
$9$ |
\( 7 \cdot 11^{2} \cdot 13 \) |
\( - 7^{9} \cdot 11^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$18018$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$51840$ |
$1.559052$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.52366$ |
$[0, 1, 1, -14197, 1600022]$ |
\(y^2+y=x^3+x^2-14197x+1600022\) |
3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.1, 99.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
13104.cg1 |
13104bx3 |
13104.cg |
13104bx |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 3^{6} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$62208$ |
$1.602556$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.49569$ |
$[0, 0, 0, -16896, -2083408]$ |
\(y^2=x^3-16896x-2083408\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[ ]$ |
15925.k1 |
15925m3 |
15925.k |
15925m |
$3$ |
$9$ |
\( 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 5^{6} \cdot 7^{15} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$8190$ |
$144$ |
$3$ |
$4.678558950$ |
$1$ |
|
$2$ |
$186624$ |
$2.137779$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.06889$ |
$[0, 1, 1, -143733, 51645444]$ |
\(y^2+y=x^3+x^2-143733x+51645444\) |
3.4.0.a.1, 9.12.0.a.1, 105.8.0.?, 117.36.0.?, 182.2.0.?, $\ldots$ |
$[(-446, 5218)]$ |
18928.bf1 |
18928bb3 |
18928.bf |
18928bb |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13^{2} \) |
\( - 2^{12} \cdot 7^{9} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$2.411572435$ |
$1$ |
|
$2$ |
$435456$ |
$2.335724$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.22117$ |
$[0, -1, 0, -317269, 169633437]$ |
\(y^2=x^3-x^2-317269x+169633437\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 117.36.0.?, 156.8.0.?, $\ldots$ |
$[(204, 10647)]$ |
20475.r1 |
20475q3 |
20475.r |
20475q |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 3^{6} \cdot 5^{6} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$8190$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$93312$ |
$1.714128$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.42845$ |
$[0, 0, 1, -26400, 4069156]$ |
\(y^2+y=x^3-26400x+4069156\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[ ]$ |
26299.g1 |
26299c3 |
26299.g |
26299c |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 17^{2} \) |
\( - 7^{9} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$27846$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$165888$ |
$1.776711$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.39331$ |
$[0, -1, 1, -33909, -5912183]$ |
\(y^2+y=x^3-x^2-33909x-5912183\) |
3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 117.36.0.?, 153.24.0.?, $\ldots$ |
$[ ]$ |
29575.o1 |
29575i3 |
29575.o |
29575i |
$3$ |
$9$ |
\( 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 5^{6} \cdot 7^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$8190$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$653184$ |
$2.447296$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.12488$ |
$[0, -1, 1, -495733, -330943507]$ |
\(y^2+y=x^3-x^2-495733x-330943507\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 182.2.0.?, 195.8.0.?, $\ldots$ |
$[ ]$ |
32851.f1 |
32851k3 |
32851.f |
32851k |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 19^{2} \) |
\( - 7^{9} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$31122$ |
$144$ |
$3$ |
$1.585478175$ |
$1$ |
|
$2$ |
$227448$ |
$1.832323$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.36351$ |
$[0, -1, 1, -42357, 8283850]$ |
\(y^2+y=x^3-x^2-42357x+8283850\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 117.36.0.?, 171.24.0.?, $\ldots$ |
$[(248, 3601)]$ |
36400.o1 |
36400bz3 |
36400.o |
36400bz |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$16380$ |
$144$ |
$3$ |
$1.433072345$ |
$1$ |
|
$2$ |
$279936$ |
$1.857969$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.35019$ |
$[0, 1, 0, -46933, 9629763]$ |
\(y^2=x^3+x^2-46933x+9629763\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 117.36.0.?, 180.24.0.?, $\ldots$ |
$[(134, 2401)]$ |
40768.j1 |
40768bw3 |
40768.j |
40768bw |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( - 2^{6} \cdot 7^{15} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1.760756112$ |
$1$ |
|
$0$ |
$248832$ |
$1.679632$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.10216$ |
$[0, 1, 0, -22997, 3300709]$ |
\(y^2=x^3+x^2-22997x+3300709\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 168.8.0.?, 182.2.0.?, $\ldots$ |
$[(2524/3, 117649/3)]$ |
40768.dl1 |
40768dy3 |
40768.dl |
40768dy |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( - 2^{6} \cdot 7^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$248832$ |
$1.679632$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.10216$ |
$[0, -1, 0, -22997, -3300709]$ |
\(y^2=x^3-x^2-22997x-3300709\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 168.8.0.?, 182.2.0.?, $\ldots$ |
$[ ]$ |
48139.g1 |
48139h3 |
48139.g |
48139h |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 23^{2} \) |
\( - 7^{9} \cdot 13 \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$37674$ |
$144$ |
$3$ |
$14.35010515$ |
$1$ |
|
$0$ |
$449064$ |
$1.927851$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.31519$ |
$[0, 1, 1, -62069, 14648769]$ |
\(y^2+y=x^3+x^2-62069x+14648769\) |
3.4.0.a.1, 9.12.0.a.1, 69.8.0-3.a.1.1, 117.36.0.?, 182.2.0.?, $\ldots$ |
$[(-1090291/58, 177148657/58)]$ |
52416.j1 |
52416ex3 |
52416.j |
52416ex |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 3^{6} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$7.019582181$ |
$1$ |
|
$0$ |
$124416$ |
$1.255983$ |
$-178643795968/524596891$ |
$1.15023$ |
$3.53947$ |
$[0, 0, 0, -4224, -260426]$ |
\(y^2=x^3-4224x-260426\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[(2171/5, 20781/5)]$ |
52416.z1 |
52416cr3 |
52416.z |
52416cr |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 3^{6} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$0.483308650$ |
$1$ |
|
$2$ |
$124416$ |
$1.255983$ |
$-178643795968/524596891$ |
$1.15023$ |
$3.53947$ |
$[0, 0, 0, -4224, 260426]$ |
\(y^2=x^3-4224x+260426\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[(55, 441)]$ |
74529.bc1 |
74529v3 |
74529.bc |
74529v |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{6} \cdot 7^{15} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$9.291358612$ |
$1$ |
|
$0$ |
$6967296$ |
$3.164841$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.47017$ |
$[0, 0, 1, -8744736, -24531185156]$ |
\(y^2+y=x^3-8744736x-24531185156\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[(794833/2, 708541115/2)]$ |
75712.f1 |
75712db3 |
75712.f |
75712db |
$3$ |
$9$ |
\( 2^{6} \cdot 7 \cdot 13^{2} \) |
\( - 2^{6} \cdot 7^{9} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$0.311946795$ |
$1$ |
|
$4$ |
$870912$ |
$1.989153$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.20673$ |
$[0, 1, 0, -79317, 21164521]$ |
\(y^2=x^3+x^2-79317x+21164521\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 168.8.0.?, 182.2.0.?, $\ldots$ |
$[(1512, 57967)]$ |
75712.cp1 |
75712l3 |
75712.cp |
75712l |
$3$ |
$9$ |
\( 2^{6} \cdot 7 \cdot 13^{2} \) |
\( - 2^{6} \cdot 7^{9} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$11.13716250$ |
$1$ |
|
$0$ |
$870912$ |
$1.989153$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.20673$ |
$[0, -1, 0, -79317, -21164521]$ |
\(y^2=x^3-x^2-79317x-21164521\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 168.8.0.?, 182.2.0.?, $\ldots$ |
$[(1690394/5, 2197732953/5)]$ |
76531.b1 |
76531b3 |
76531.b |
76531b |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 29^{2} \) |
\( - 7^{9} \cdot 13 \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$47502$ |
$144$ |
$3$ |
$6.024620592$ |
$1$ |
|
$0$ |
$825552$ |
$2.043751$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.26097$ |
$[0, -1, 1, -98677, -29372338]$ |
\(y^2+y=x^3-x^2-98677x-29372338\) |
3.4.0.a.1, 9.12.0.a.1, 87.8.0.?, 117.36.0.?, 182.2.0.?, $\ldots$ |
$[(14604/5, 1322717/5)]$ |
77077.q1 |
77077v3 |
77077.q |
77077v |
$3$ |
$9$ |
\( 7^{2} \cdot 11^{2} \cdot 13 \) |
\( - 7^{15} \cdot 11^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$18018$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2488320$ |
$2.532005$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.77896$ |
$[0, -1, 1, -695669, -550198958]$ |
\(y^2+y=x^3-x^2-695669x-550198958\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 182.2.0.?, 231.8.0.?, $\ldots$ |
$[ ]$ |
87451.d1 |
87451d3 |
87451.d |
87451d |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 31^{2} \) |
\( - 7^{9} \cdot 13 \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$50778$ |
$144$ |
$3$ |
$2.408353449$ |
$1$ |
|
$2$ |
$1078920$ |
$2.077099$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.24619$ |
$[0, -1, 1, -112757, 35955877]$ |
\(y^2+y=x^3-x^2-112757x+35955877\) |
3.4.0.a.1, 9.12.0.a.1, 93.8.0.?, 117.36.0.?, 182.2.0.?, $\ldots$ |
$[(-83, 6688)]$ |
91728.v1 |
91728ep3 |
91728.v |
91728ep |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{6} \cdot 7^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2985984$ |
$2.575512$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.75187$ |
$[0, 0, 0, -827904, 714608944]$ |
\(y^2=x^3-827904x+714608944\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 117.36.0.?, 156.8.0.?, $\ldots$ |
$[ ]$ |
99099.bk1 |
99099q3 |
99099.bk |
99099q |
$3$ |
$9$ |
\( 3^{2} \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( - 3^{6} \cdot 7^{9} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$18018$ |
$144$ |
$3$ |
$13.27097886$ |
$1$ |
|
$0$ |
$1244160$ |
$2.108356$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.23264$ |
$[0, 0, 1, -127776, -43328376]$ |
\(y^2+y=x^3-127776x-43328376\) |
3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.2, 99.24.0.?, 117.36.0.?, $\ldots$ |
$[(15220337/124, 53930707735/124)]$ |
124579.b1 |
124579b3 |
124579.b |
124579b |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 37^{2} \) |
\( - 7^{9} \cdot 13 \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$60606$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1866240$ |
$2.165562$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.20860$ |
$[0, 1, 1, -160629, -61124646]$ |
\(y^2+y=x^3+x^2-160629x-61124646\) |
3.4.0.a.1, 9.12.0.a.1, 111.8.0.?, 117.36.0.?, 182.2.0.?, $\ldots$ |
$[ ]$ |
132496.k1 |
132496j3 |
132496.k |
132496j |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{12} \cdot 7^{15} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$5.559485640$ |
$1$ |
|
$0$ |
$20901888$ |
$3.308681$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.34967$ |
$[0, 1, 0, -15546197, -58153176509]$ |
\(y^2=x^3+x^2-15546197x-58153176509\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 36.24.0-9.a.1.3, 117.36.0.?, $\ldots$ |
$[(2945686/15, 4751960759/15)]$ |
143143.s1 |
143143s3 |
143143.s |
143143s |
$3$ |
$9$ |
\( 7 \cdot 11^{2} \cdot 13^{2} \) |
\( - 7^{9} \cdot 11^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$18018$ |
$144$ |
$3$ |
$0.578921552$ |
$1$ |
|
$4$ |
$8709120$ |
$2.841526$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.84263$ |
$[0, 1, 1, -2399349, 3524846199]$ |
\(y^2+y=x^3+x^2-2399349x+3524846199\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 182.2.0.?, 429.8.0.?, $\ldots$ |
$[(1811, 71571)]$ |
143325.de1 |
143325df3 |
143325.de |
143325df |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{6} \cdot 5^{6} \cdot 7^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$8190$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4478976$ |
$2.687084$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.68602$ |
$[0, 0, 1, -1293600, -1395720594]$ |
\(y^2+y=x^3-1293600x-1395720594\) |
3.4.0.a.1, 9.12.0.a.1, 105.8.0.?, 117.36.0.?, 182.2.0.?, $\ldots$ |
$[ ]$ |
145600.z1 |
145600ew3 |
145600.z |
145600ew |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 5^{6} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$559872$ |
$1.511396$ |
$-178643795968/524596891$ |
$1.15023$ |
$3.49311$ |
$[0, 1, 0, -11733, -1209587]$ |
\(y^2=x^3+x^2-11733x-1209587\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 120.8.0.?, 182.2.0.?, $\ldots$ |
$[ ]$ |
145600.hm1 |
145600di3 |
145600.hm |
145600di |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{6} \cdot 5^{6} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$559872$ |
$1.511396$ |
$-178643795968/524596891$ |
$1.15023$ |
$3.49311$ |
$[0, -1, 0, -11733, 1209587]$ |
\(y^2=x^3-x^2-11733x+1209587\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 120.8.0.?, 182.2.0.?, $\ldots$ |
$[ ]$ |
152971.e1 |
152971e3 |
152971.e |
152971e |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 41^{2} \) |
\( - 7^{9} \cdot 13 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$67158$ |
$144$ |
$3$ |
$16.73895679$ |
$1$ |
|
$0$ |
$2488320$ |
$2.216888$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.18782$ |
$[0, -1, 1, -197237, -83030645]$ |
\(y^2+y=x^3-x^2-197237x-83030645\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 123.8.0.?, 182.2.0.?, $\ldots$ |
$[(583924549/750, 12152527801343/750)]$ |
168259.f1 |
168259f3 |
168259.f |
168259f |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 43^{2} \) |
\( - 7^{9} \cdot 13 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$70434$ |
$144$ |
$3$ |
$51.53569558$ |
$1$ |
|
$0$ |
$2925720$ |
$2.240704$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.17841$ |
$[0, -1, 1, -216949, 95931992]$ |
\(y^2+y=x^3-x^2-216949x+95931992\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 129.8.0.?, 182.2.0.?, $\ldots$ |
$[(-11515102999989543115380/5249811713, 1541141165820351566406200188427651/5249811713)]$ |
170352.t1 |
170352e3 |
170352.t |
170352e |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 7^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$10450944$ |
$2.885033$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.81601$ |
$[0, 0, 0, -2855424, -4577247376]$ |
\(y^2=x^3-2855424x-4577247376\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 117.36.0.?, 156.8.0.?, $\ldots$ |
$[ ]$ |
176176.cw1 |
176176bw3 |
176176.cw |
176176bw |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( - 2^{12} \cdot 7^{9} \cdot 11^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$36036$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$3732480$ |
$2.252197$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.17393$ |
$[0, -1, 0, -227157, -102628579]$ |
\(y^2=x^3-x^2-227157x-102628579\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 132.8.0.?, 182.2.0.?, $\ldots$ |
$[ ]$ |
184093.j1 |
184093j3 |
184093.j |
184093j |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \cdot 17^{2} \) |
\( - 7^{15} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$27846$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$7962624$ |
$2.749664$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.65121$ |
$[0, 1, 1, -1661557, 2031201785]$ |
\(y^2+y=x^3+x^2-1661557x+2031201785\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 182.2.0.?, 357.8.0.?, $\ldots$ |
$[ ]$ |
201019.e1 |
201019e3 |
201019.e |
201019e |
$3$ |
$9$ |
\( 7 \cdot 13 \cdot 47^{2} \) |
\( - 7^{9} \cdot 13 \cdot 47^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$76986$ |
$144$ |
$3$ |
$2.565419019$ |
$1$ |
|
$2$ |
$3800520$ |
$2.285179$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.16125$ |
$[0, 1, 1, -259189, 125090495]$ |
\(y^2+y=x^3+x^2-259189x+125090495\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 141.8.0.?, 182.2.0.?, $\ldots$ |
$[(-525, 10804)]$ |
207025.bj1 |
207025bj3 |
207025.bj |
207025bj |
$3$ |
$9$ |
\( 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 5^{6} \cdot 7^{15} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$8190$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$31352832$ |
$3.420254$ |
$-178643795968/524596891$ |
$1.15023$ |
$5.26400$ |
$[0, 1, 1, -24290933, 113562204669]$ |
\(y^2+y=x^3+x^2-24290933x+113562204669\) |
3.4.0.a.1, 9.12.0.a.1, 30.8.0-3.a.1.2, 90.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
229957.j1 |
229957j3 |
229957.j |
229957j |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \cdot 19^{2} \) |
\( - 7^{15} \cdot 13 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$31122$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$10917504$ |
$2.805279$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.62145$ |
$[0, 1, 1, -2075509, -2837209630]$ |
\(y^2+y=x^3+x^2-2075509x-2837209630\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 182.2.0.?, 399.8.0.?, $\ldots$ |
$[ ]$ |
236691.l1 |
236691l3 |
236691.l |
236691l |
$3$ |
$9$ |
\( 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 3^{6} \cdot 7^{9} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$27846$ |
$144$ |
$3$ |
$2.991875861$ |
$1$ |
|
$2$ |
$3981312$ |
$2.326015$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.14592$ |
$[0, 0, 1, -305184, 159934117]$ |
\(y^2+y=x^3-305184x+159934117\) |
3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.2, 117.36.0.?, 153.24.0.?, $\ldots$ |
$[(697, 16906)]$ |
254800.gp1 |
254800gp3 |
254800.gp |
254800gp |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$16380$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$13436928$ |
$2.830925$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.60809$ |
$[0, -1, 0, -2299733, -3307608163]$ |
\(y^2=x^3-x^2-2299733x-3307608163\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 182.2.0.?, 420.8.0.?, $\ldots$ |
$[ ]$ |