Properties

Label 187200ck
Number of curves $4$
Conductor $187200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 187200ck have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 187200ck do not have complex multiplication.

Modular form 187200.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} - 4 q^{11} + q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 187200ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187200.o3 187200ck1 \([0, 0, 0, -100200, 12179000]\) \(9538484224/26325\) \(307054800000000\) \([2]\) \(1179648\) \(1.6528\) \(\Gamma_0(N)\)-optimal
187200.o2 187200ck2 \([0, 0, 0, -140700, 1406000]\) \(1650587344/950625\) \(177409440000000000\) \([2, 2]\) \(2359296\) \(1.9993\)  
187200.o4 187200ck3 \([0, 0, 0, 561300, 11234000]\) \(26198797244/15234375\) \(-11372400000000000000\) \([2]\) \(4718592\) \(2.3459\)  
187200.o1 187200ck4 \([0, 0, 0, -1490700, -697894000]\) \(490757540836/2142075\) \(1599050419200000000\) \([2]\) \(4718592\) \(2.3459\)