Properties

Label 187200.ba
Number of curves $4$
Conductor $187200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 187200.ba have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 187200.ba do not have complex multiplication.

Modular form 187200.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} + q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 187200.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187200.ba1 187200hc4 \([0, 0, 0, -7238700, -4490046000]\) \(520300455507/193072360\) \(15565796400660480000000\) \([2]\) \(15925248\) \(2.9582\)  
187200.ba2 187200hc2 \([0, 0, 0, -6398700, -6229966000]\) \(261984288445803/42250\) \(4672512000000000\) \([2]\) \(5308416\) \(2.4089\)  
187200.ba3 187200hc1 \([0, 0, 0, -398700, -97966000]\) \(-63378025803/812500\) \(-89856000000000000\) \([2]\) \(2654208\) \(2.0624\) \(\Gamma_0(N)\)-optimal
187200.ba4 187200hc3 \([0, 0, 0, 1401300, -498366000]\) \(3774555693/3515200\) \(-283400935833600000000\) \([2]\) \(7962624\) \(2.6117\)