Properties

Label 186914.b
Number of curves $4$
Conductor $186914$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 186914.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 186914.b do not have complex multiplication.

Modular form 186914.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - q^{7} - q^{8} - 3 q^{9} - 2 q^{10} + 4 q^{11} + q^{14} + q^{16} + 2 q^{17} + 3 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 186914.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
186914.b1 186914g3 \([1, -1, 0, -578096, 169203880]\) \(4426535117697057/3643354232\) \(17585774997205688\) \([2]\) \(1769472\) \(2.0458\)  
186914.b2 186914g4 \([1, -1, 0, -375296, -87430056]\) \(1211116876909857/15268431752\) \(73697803796439368\) \([2]\) \(1769472\) \(2.0458\)  
186914.b3 186914g2 \([1, -1, 0, -44056, 1408512]\) \(1959225089697/959017024\) \(4628992002596416\) \([2, 2]\) \(884736\) \(1.6992\)  
186914.b4 186914g1 \([1, -1, 0, 10024, 164672]\) \(23076099423/15855616\) \(-76532030009344\) \([2]\) \(442368\) \(1.3527\) \(\Gamma_0(N)\)-optimal