Properties

Label 18590.k
Number of curves $1$
Conductor $18590$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 18590.k1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 18590.k do not have complex multiplication.

Modular form 18590.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} - q^{7} + q^{8} - 2 q^{9} - q^{10} + q^{11} - q^{12} - q^{14} + q^{15} + q^{16} - q^{17} - 2 q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 18590.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18590.k1 18590l1 \([1, 1, 1, -180800006, -2232139199997]\) \(-135412551115258010417641/367535633653760000000\) \(-1774024304340671651840000000\) \([]\) \(8580096\) \(3.9160\) \(\Gamma_0(N)\)-optimal