Properties

Label 185130.bq
Number of curves $4$
Conductor $185130$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 185130.bq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 185130.bq do not have complex multiplication.

Modular form 185130.2.a.bq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 2 q^{7} - q^{8} - q^{10} - 2 q^{13} + 2 q^{14} + q^{16} + q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 185130.bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
185130.bq1 185130cy3 \([1, -1, 0, -4539519, -731130867]\) \(8010684753304969/4456448000000\) \(5755359847514112000000\) \([2]\) \(12441600\) \(2.8657\)  
185130.bq2 185130cy1 \([1, -1, 0, -2780784, 1785507840]\) \(1841373668746009/31443200\) \(40607885642860800\) \([2]\) \(4147200\) \(2.3164\) \(\Gamma_0(N)\)-optimal
185130.bq3 185130cy2 \([1, -1, 0, -2693664, 1902544848]\) \(-1673672305534489/241375690000\) \(-311728972130273610000\) \([2]\) \(8294400\) \(2.6630\)  
185130.bq4 185130cy4 \([1, -1, 0, 17763201, -5802769395]\) \(479958568556831351/289000000000000\) \(-373234243041000000000000\) \([2]\) \(24883200\) \(3.2123\)