Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1850.a1 |
1850g1 |
1850.a |
1850g |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{10} \cdot 5^{4} \cdot 37^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$444$ |
$16$ |
$0$ |
$0.677837982$ |
$1$ |
|
$8$ |
$1800$ |
$0.704188$ |
$-19026212425/51868672$ |
$0.95767$ |
$4.23361$ |
$[1, 0, 1, -476, 9498]$ |
\(y^2+xy+y=x^3-476x+9498\) |
3.8.0-3.a.1.2, 148.2.0.?, 444.16.0.? |
$[(17, 71)]$ |
1850.a2 |
1850g2 |
1850.a |
1850g |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{30} \cdot 5^{4} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$444$ |
$16$ |
$0$ |
$2.033513947$ |
$1$ |
|
$0$ |
$5400$ |
$1.253494$ |
$12642252501575/39728447488$ |
$1.00115$ |
$5.06375$ |
$[1, 0, 1, 4149, -216202]$ |
\(y^2+xy+y=x^3+4149x-216202\) |
3.8.0-3.a.1.1, 148.2.0.?, 444.16.0.? |
$[(967/3, 31304/3)]$ |
1850.b1 |
1850b1 |
1850.b |
1850b |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{2} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.507639273$ |
$1$ |
|
$4$ |
$216$ |
$-0.405339$ |
$-625/2368$ |
$1.29119$ |
$2.45164$ |
$[1, 0, 1, -1, -12]$ |
\(y^2+xy+y=x^3-x-12\) |
148.2.0.? |
$[(3, 2)]$ |
1850.c1 |
1850c1 |
1850.c |
1850c |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2 \cdot 5^{8} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$960$ |
$0.413319$ |
$-121945/2738$ |
$0.85164$ |
$3.75793$ |
$[1, 1, 0, -75, -1625]$ |
\(y^2+xy=x^3+x^2-75x-1625\) |
8.2.0.a.1 |
$[]$ |
1850.d1 |
1850e1 |
1850.d |
1850e |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{3} \cdot 5^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$0.686718092$ |
$1$ |
|
$4$ |
$720$ |
$0.391537$ |
$-804357/296$ |
$0.80610$ |
$3.79837$ |
$[1, -1, 0, -242, 1916]$ |
\(y^2+xy=x^3-x^2-242x+1916\) |
1480.2.0.? |
$[(19, 53)]$ |
1850.e1 |
1850f2 |
1850.e |
1850f |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{9} \cdot 5^{3} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1480$ |
$12$ |
$0$ |
$5.115691247$ |
$1$ |
|
$2$ |
$1728$ |
$0.886325$ |
$2253707317528029/700928$ |
$1.14580$ |
$5.34095$ |
$[1, -1, 0, -13657, -610899]$ |
\(y^2+xy=x^3-x^2-13657x-610899\) |
2.3.0.a.1, 40.6.0.b.1, 296.6.0.?, 740.6.0.?, 1480.12.0.? |
$[(2199, 101853)]$ |
1850.e2 |
1850f1 |
1850.e |
1850f |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{18} \cdot 5^{3} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1480$ |
$12$ |
$0$ |
$2.557845623$ |
$1$ |
|
$3$ |
$864$ |
$0.539751$ |
$557238592989/9699328$ |
$1.12880$ |
$4.23698$ |
$[1, -1, 0, -857, -9299]$ |
\(y^2+xy=x^3-x^2-857x-9299\) |
2.3.0.a.1, 40.6.0.c.1, 296.6.0.?, 370.6.0.?, 1480.12.0.? |
$[(-15, 4)]$ |
1850.f1 |
1850a3 |
1850.f |
1850a |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{4} \cdot 5^{7} \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$4440$ |
$384$ |
$9$ |
$11.27996712$ |
$1$ |
|
$1$ |
$6912$ |
$1.448227$ |
$16232905099479601/4052240$ |
$0.97924$ |
$6.24522$ |
$[1, 1, 0, -131875, -18487875]$ |
\(y^2+xy=x^3+x^2-131875x-18487875\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(563410/33, 250098685/33)]$ |
1850.f2 |
1850a4 |
1850.f |
1850a |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{2} \cdot 5^{8} \cdot 37^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$4440$ |
$384$ |
$9$ |
$5.639983561$ |
$1$ |
|
$2$ |
$13824$ |
$1.794800$ |
$-16048965315233521/256572640900$ |
$0.97955$ |
$6.24733$ |
$[1, 1, 0, -131375, -18634375]$ |
\(y^2+xy=x^3+x^2-131375x-18634375\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.2, $\ldots$ |
$[(1780, 72535)]$ |
1850.f3 |
1850a1 |
1850.f |
1850a |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{12} \cdot 5^{9} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$4440$ |
$384$ |
$9$ |
$3.759989040$ |
$1$ |
|
$3$ |
$2304$ |
$0.898921$ |
$46694890801/18944000$ |
$0.91392$ |
$4.54922$ |
$[1, 1, 0, -1875, -17875]$ |
\(y^2+xy=x^3+x^2-1875x-17875\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(-19, 116)]$ |
1850.f4 |
1850a2 |
1850.f |
1850a |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{12} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$4440$ |
$384$ |
$9$ |
$1.879994520$ |
$1$ |
|
$2$ |
$4608$ |
$1.245495$ |
$1625964918479/1369000000$ |
$0.94818$ |
$5.02114$ |
$[1, 1, 0, 6125, -121875]$ |
\(y^2+xy=x^3+x^2+6125x-121875\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.1, $\ldots$ |
$[(30, 285)]$ |
1850.g1 |
1850d1 |
1850.g |
1850d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{8} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22080$ |
$1.747602$ |
$-132384574175625/11484004352$ |
$1.06229$ |
$6.05241$ |
$[1, -1, 0, -77617, 8944541]$ |
\(y^2+xy=x^3-x^2-77617x+8944541\) |
8.2.0.a.1 |
$[]$ |
1850.h1 |
1850m1 |
1850.h |
1850m |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{2} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.062324207$ |
$1$ |
|
$10$ |
$4416$ |
$0.942883$ |
$-132384574175625/11484004352$ |
$1.06229$ |
$4.76878$ |
$[1, -1, 1, -3105, 72177]$ |
\(y^2+xy+y=x^3-x^2-3105x+72177\) |
8.2.0.a.1 |
$[(183, 2276)]$ |
1850.i1 |
1850l1 |
1850.i |
1850l |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{11} \cdot 5^{7} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$0.100155033$ |
$1$ |
|
$12$ |
$1056$ |
$0.559989$ |
$214921799/378880$ |
$0.86906$ |
$3.92910$ |
$[1, 0, 0, 312, -3008]$ |
\(y^2+xy=x^3+312x-3008\) |
1480.2.0.? |
$[(12, 44)]$ |
1850.j1 |
1850o2 |
1850.j |
1850o |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{9} \cdot 5^{9} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1480$ |
$12$ |
$0$ |
$2.217067129$ |
$1$ |
|
$4$ |
$8640$ |
$1.691044$ |
$2253707317528029/700928$ |
$1.14580$ |
$6.62458$ |
$[1, -1, 1, -341430, -76703803]$ |
\(y^2+xy+y=x^3-x^2-341430x-76703803\) |
2.3.0.a.1, 40.6.0.b.1, 296.6.0.?, 740.6.0.?, 1480.12.0.? |
$[(-337, 171)]$ |
1850.j2 |
1850o1 |
1850.j |
1850o |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{18} \cdot 5^{9} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1480$ |
$12$ |
$0$ |
$1.108533564$ |
$1$ |
|
$7$ |
$4320$ |
$1.344471$ |
$557238592989/9699328$ |
$1.12880$ |
$5.52061$ |
$[1, -1, 1, -21430, -1183803]$ |
\(y^2+xy+y=x^3-x^2-21430x-1183803\) |
2.3.0.a.1, 40.6.0.c.1, 296.6.0.?, 370.6.0.?, 1480.12.0.? |
$[(-87, 171)]$ |
1850.k1 |
1850j3 |
1850.k |
1850j |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2 \cdot 5^{10} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1480$ |
$48$ |
$0$ |
$8.348155895$ |
$1$ |
|
$0$ |
$1536$ |
$0.881229$ |
$6825481747209/46250$ |
$0.96373$ |
$5.21183$ |
$[1, -1, 1, -9880, -375503]$ |
\(y^2+xy+y=x^3-x^2-9880x-375503\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 40.24.0-40.y.1.13, 296.24.0.?, $\ldots$ |
$[(72649/24, 7563175/24)]$ |
1850.k2 |
1850j2 |
1850.k |
1850j |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{2} \cdot 5^{8} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1480$ |
$48$ |
$0$ |
$4.174077947$ |
$1$ |
|
$2$ |
$768$ |
$0.534657$ |
$1767172329/136900$ |
$0.99471$ |
$4.11399$ |
$[1, -1, 1, -630, -5503]$ |
\(y^2+xy+y=x^3-x^2-630x-5503\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 40.24.0-40.b.1.4, 296.24.0.?, 740.24.0.?, $\ldots$ |
$[(-53/2, 205/2)]$ |
1850.k3 |
1850j1 |
1850.k |
1850j |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( 2^{4} \cdot 5^{7} \cdot 37 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1480$ |
$48$ |
$0$ |
$2.087038973$ |
$1$ |
|
$7$ |
$384$ |
$0.188082$ |
$15438249/2960$ |
$0.81779$ |
$3.48388$ |
$[1, -1, 1, -130, 497]$ |
\(y^2+xy+y=x^3-x^2-130x+497\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.y.1.2, 296.24.0.?, 370.6.0.?, $\ldots$ |
$[(-7, 35)]$ |
1850.k4 |
1850j4 |
1850.k |
1850j |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2 \cdot 5^{7} \cdot 37^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1480$ |
$48$ |
$0$ |
$2.087038973$ |
$1$ |
|
$0$ |
$1536$ |
$0.881229$ |
$1689410871/18741610$ |
$1.06786$ |
$4.49346$ |
$[1, -1, 1, 620, -25503]$ |
\(y^2+xy+y=x^3-x^2+620x-25503\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.s.1.1, 296.24.0.?, 1480.48.0.? |
$[(831/2, 23215/2)]$ |
1850.l1 |
1850n1 |
1850.l |
1850n |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{3} \cdot 5^{3} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$0.196247114$ |
$1$ |
|
$6$ |
$144$ |
$-0.413182$ |
$-804357/296$ |
$0.80610$ |
$2.51475$ |
$[1, -1, 1, -10, 17]$ |
\(y^2+xy+y=x^3-x^2-10x+17\) |
1480.2.0.? |
$[(-1, 5)]$ |
1850.m1 |
1850k1 |
1850.m |
1850k |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2 \cdot 5^{2} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.449379421$ |
$1$ |
|
$0$ |
$192$ |
$-0.391400$ |
$-121945/2738$ |
$0.85164$ |
$2.47430$ |
$[1, 0, 0, -3, -13]$ |
\(y^2+xy=x^3-3x-13\) |
8.2.0.a.1 |
$[(19/2, 55/2)]$ |
1850.n1 |
1850p1 |
1850.n |
1850p |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{8} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1080$ |
$0.399380$ |
$-625/2368$ |
$1.29119$ |
$3.73526$ |
$[1, 1, 1, -13, -1469]$ |
\(y^2+xy+y=x^3+x^2-13x-1469\) |
148.2.0.? |
$[]$ |
1850.o1 |
1850h1 |
1850.o |
1850h |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2 \cdot 5^{7} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$13320$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.413506$ |
$-16954786009/370$ |
$0.88414$ |
$4.41456$ |
$[1, 1, 1, -1338, 18281]$ |
\(y^2+xy+y=x^3+x^2-1338x+18281\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 333.36.0.?, $\ldots$ |
$[]$ |
1850.o2 |
1850h2 |
1850.o |
1850h |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{3} \cdot 5^{9} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$13320$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2592$ |
$0.962812$ |
$-702595369/50653000$ |
$0.95453$ |
$4.63381$ |
$[1, 1, 1, -463, 42781]$ |
\(y^2+xy+y=x^3+x^2-463x+42781\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 333.36.0.?, 888.24.0.?, 1480.2.0.?, $\ldots$ |
$[]$ |
1850.o3 |
1850h3 |
1850.o |
1850h |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 5^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$13320$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$7776$ |
$1.512117$ |
$510273943271/37000000000$ |
$0.99687$ |
$5.50815$ |
$[1, 1, 1, 4162, -1150469]$ |
\(y^2+xy+y=x^3+x^2+4162x-1150469\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 333.36.0.?, $\ldots$ |
$[]$ |
1850.p1 |
1850i1 |
1850.p |
1850i |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{10} \cdot 5^{10} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2220$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9000$ |
$1.508907$ |
$-19026212425/51868672$ |
$0.95767$ |
$5.51723$ |
$[1, 1, 1, -11888, 1187281]$ |
\(y^2+xy+y=x^3+x^2-11888x+1187281\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 148.2.0.?, 444.8.0.?, 2220.16.0.? |
$[]$ |
1850.p2 |
1850i2 |
1850.p |
1850i |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{30} \cdot 5^{10} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2220$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27000$ |
$2.058212$ |
$12642252501575/39728447488$ |
$1.00115$ |
$6.34737$ |
$[1, 1, 1, 103737, -27025219]$ |
\(y^2+xy+y=x^3+x^2+103737x-27025219\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 148.2.0.?, 444.8.0.?, 2220.16.0.? |
$[]$ |