Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
1850.a1 1850.a 25237 2 \cdot 5^{2} \cdot 37 11 Z/3Z\Z/3\Z 0.6778379820.677837982 [1,0,1,476,9498][1, 0, 1, -476, 9498] y2+xy+y=x3476x+9498y^2+xy+y=x^3-476x+9498 3.8.0-3.a.1.2, 148.2.0.?, 444.16.0.?
1850.a2 1850.a 25237 2 \cdot 5^{2} \cdot 37 11 trivial\mathsf{trivial} 2.0335139472.033513947 [1,0,1,4149,216202][1, 0, 1, 4149, -216202] y2+xy+y=x3+4149x216202y^2+xy+y=x^3+4149x-216202 3.8.0-3.a.1.1, 148.2.0.?, 444.16.0.?
1850.b1 1850.b 25237 2 \cdot 5^{2} \cdot 37 11 trivial\mathsf{trivial} 0.5076392730.507639273 [1,0,1,1,12][1, 0, 1, -1, -12] y2+xy+y=x3x12y^2+xy+y=x^3-x-12 148.2.0.?
1850.c1 1850.c 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,0,75,1625][1, 1, 0, -75, -1625] y2+xy=x3+x275x1625y^2+xy=x^3+x^2-75x-1625 8.2.0.a.1
1850.d1 1850.d 25237 2 \cdot 5^{2} \cdot 37 11 trivial\mathsf{trivial} 0.6867180920.686718092 [1,1,0,242,1916][1, -1, 0, -242, 1916] y2+xy=x3x2242x+1916y^2+xy=x^3-x^2-242x+1916 1480.2.0.?
1850.e1 1850.e 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 5.1156912475.115691247 [1,1,0,13657,610899][1, -1, 0, -13657, -610899] y2+xy=x3x213657x610899y^2+xy=x^3-x^2-13657x-610899 2.3.0.a.1, 40.6.0.b.1, 296.6.0.?, 740.6.0.?, 1480.12.0.?
1850.e2 1850.e 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 2.5578456232.557845623 [1,1,0,857,9299][1, -1, 0, -857, -9299] y2+xy=x3x2857x9299y^2+xy=x^3-x^2-857x-9299 2.3.0.a.1, 40.6.0.c.1, 296.6.0.?, 370.6.0.?, 1480.12.0.?
1850.f1 1850.f 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 11.2799671211.27996712 [1,1,0,131875,18487875][1, 1, 0, -131875, -18487875] y2+xy=x3+x2131875x18487875y^2+xy=x^3+x^2-131875x-18487875 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, \ldots
1850.f2 1850.f 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 5.6399835615.639983561 [1,1,0,131375,18634375][1, 1, 0, -131375, -18634375] y2+xy=x3+x2131375x18634375y^2+xy=x^3+x^2-131375x-18634375 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.2, \ldots
1850.f3 1850.f 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 3.7599890403.759989040 [1,1,0,1875,17875][1, 1, 0, -1875, -17875] y2+xy=x3+x21875x17875y^2+xy=x^3+x^2-1875x-17875 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, \ldots
1850.f4 1850.f 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 1.8799945201.879994520 [1,1,0,6125,121875][1, 1, 0, 6125, -121875] y2+xy=x3+x2+6125x121875y^2+xy=x^3+x^2+6125x-121875 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.1, \ldots
1850.g1 1850.g 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,0,77617,8944541][1, -1, 0, -77617, 8944541] y2+xy=x3x277617x+8944541y^2+xy=x^3-x^2-77617x+8944541 8.2.0.a.1
1850.h1 1850.h 25237 2 \cdot 5^{2} \cdot 37 11 trivial\mathsf{trivial} 0.0623242070.062324207 [1,1,1,3105,72177][1, -1, 1, -3105, 72177] y2+xy+y=x3x23105x+72177y^2+xy+y=x^3-x^2-3105x+72177 8.2.0.a.1
1850.i1 1850.i 25237 2 \cdot 5^{2} \cdot 37 11 trivial\mathsf{trivial} 0.1001550330.100155033 [1,0,0,312,3008][1, 0, 0, 312, -3008] y2+xy=x3+312x3008y^2+xy=x^3+312x-3008 1480.2.0.?
1850.j1 1850.j 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 2.2170671292.217067129 [1,1,1,341430,76703803][1, -1, 1, -341430, -76703803] y2+xy+y=x3x2341430x76703803y^2+xy+y=x^3-x^2-341430x-76703803 2.3.0.a.1, 40.6.0.b.1, 296.6.0.?, 740.6.0.?, 1480.12.0.?
1850.j2 1850.j 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 1.1085335641.108533564 [1,1,1,21430,1183803][1, -1, 1, -21430, -1183803] y2+xy+y=x3x221430x1183803y^2+xy+y=x^3-x^2-21430x-1183803 2.3.0.a.1, 40.6.0.c.1, 296.6.0.?, 370.6.0.?, 1480.12.0.?
1850.k1 1850.k 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 8.3481558958.348155895 [1,1,1,9880,375503][1, -1, 1, -9880, -375503] y2+xy+y=x3x29880x375503y^2+xy+y=x^3-x^2-9880x-375503 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 40.24.0-40.y.1.13, 296.24.0.?, \ldots
1850.k2 1850.k 25237 2 \cdot 5^{2} \cdot 37 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4.1740779474.174077947 [1,1,1,630,5503][1, -1, 1, -630, -5503] y2+xy+y=x3x2630x5503y^2+xy+y=x^3-x^2-630x-5503 2.6.0.a.1, 4.12.0-2.a.1.1, 40.24.0-40.b.1.4, 296.24.0.?, 740.24.0.?, \ldots
1850.k3 1850.k 25237 2 \cdot 5^{2} \cdot 37 11 Z/4Z\Z/4\Z 2.0870389732.087038973 [1,1,1,130,497][1, -1, 1, -130, 497] y2+xy+y=x3x2130x+497y^2+xy+y=x^3-x^2-130x+497 2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.y.1.2, 296.24.0.?, 370.6.0.?, \ldots
1850.k4 1850.k 25237 2 \cdot 5^{2} \cdot 37 11 Z/2Z\Z/2\Z 2.0870389732.087038973 [1,1,1,620,25503][1, -1, 1, 620, -25503] y2+xy+y=x3x2+620x25503y^2+xy+y=x^3-x^2+620x-25503 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.s.1.1, 296.24.0.?, 1480.48.0.?
1850.l1 1850.l 25237 2 \cdot 5^{2} \cdot 37 11 trivial\mathsf{trivial} 0.1962471140.196247114 [1,1,1,10,17][1, -1, 1, -10, 17] y2+xy+y=x3x210x+17y^2+xy+y=x^3-x^2-10x+17 1480.2.0.?
1850.m1 1850.m 25237 2 \cdot 5^{2} \cdot 37 11 trivial\mathsf{trivial} 1.4493794211.449379421 [1,0,0,3,13][1, 0, 0, -3, -13] y2+xy=x33x13y^2+xy=x^3-3x-13 8.2.0.a.1
1850.n1 1850.n 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,1,13,1469][1, 1, 1, -13, -1469] y2+xy+y=x3+x213x1469y^2+xy+y=x^3+x^2-13x-1469 148.2.0.?
1850.o1 1850.o 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,1,1338,18281][1, 1, 1, -1338, 18281] y2+xy+y=x3+x21338x+18281y^2+xy+y=x^3+x^2-1338x+18281 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 333.36.0.?, \ldots
1850.o2 1850.o 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,1,463,42781][1, 1, 1, -463, 42781] y2+xy+y=x3+x2463x+42781y^2+xy+y=x^3+x^2-463x+42781 3.12.0.a.1, 15.24.0-3.a.1.1, 333.36.0.?, 888.24.0.?, 1480.2.0.?, \ldots
1850.o3 1850.o 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,1,4162,1150469][1, 1, 1, 4162, -1150469] y2+xy+y=x3+x2+4162x1150469y^2+xy+y=x^3+x^2+4162x-1150469 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 333.36.0.?, \ldots
1850.p1 1850.p 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,1,11888,1187281][1, 1, 1, -11888, 1187281] y2+xy+y=x3+x211888x+1187281y^2+xy+y=x^3+x^2-11888x+1187281 3.4.0.a.1, 15.8.0-3.a.1.2, 148.2.0.?, 444.8.0.?, 2220.16.0.?
1850.p2 1850.p 25237 2 \cdot 5^{2} \cdot 37 00 trivial\mathsf{trivial} 11 [1,1,1,103737,27025219][1, 1, 1, 103737, -27025219] y2+xy+y=x3+x2+103737x27025219y^2+xy+y=x^3+x^2+103737x-27025219 3.4.0.a.1, 15.8.0-3.a.1.1, 148.2.0.?, 444.8.0.?, 2220.16.0.?
  displayed columns for results