Properties

 Label 1850g2 Conductor $1850$ Discriminant $-2.483\times 10^{13}$ j-invariant $$\frac{12642252501575}{39728447488}$$ CM no Rank $1$ Torsion structure trivial

Related objects

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, 4149, -216202])

gp: E = ellinit([1, 0, 1, 4149, -216202])

magma: E := EllipticCurve([1, 0, 1, 4149, -216202]);

$$y^2+xy+y=x^3+4149x-216202$$

Mordell-Weil group structure

$\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(\frac{967}{9}, \frac{31304}{27}\right)$$ (967/9, 31304/27) $\hat{h}(P)$ ≈ $2.0335139470765783272707373117$

Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$1850$$ = $2 \cdot 5^{2} \cdot 37$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-24830279680000$ = $-1 \cdot 2^{30} \cdot 5^{4} \cdot 37$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{12642252501575}{39728447488}$$ = $2^{-30} \cdot 5^{2} \cdot 31^{3} \cdot 37^{-1} \cdot 257^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.2534944142428815122553743473\dots$ Stable Faltings height: $0.71701511009818138738845456956\dots$

BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $2.0335139470765783272707373117\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.34361529519664162919300846994\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $2\cdot1\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $1.3974929904224126901111690235$

Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} - 4 q^{7} - q^{8} + q^{9} - 2 q^{12} + 2 q^{13} + 4 q^{14} + q^{16} - q^{18} + 5 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 5400 $\Gamma_0(N)$-optimal: no Manin constant: 1

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{30}$ Non-split multiplicative 1 1 30 30
$5$ $1$ $IV$ Additive -1 2 4 0
$37$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B.1.2 3.8.0.2

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit ord add ord ss ord ss ord ord ord ord split ord ord ord 1 5 - 1 3,1 1 1,1 1 1 1 1 2 1 1 1 0 1 - 0 0,0 0 0,0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 1850g consists of 2 curves linked by isogenies of degree 3.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-3})$$ $$\Z/3\Z$$ Not in database $3$ 3.1.3700.1 $$\Z/2\Z$$ Not in database $3$ 3.1.924075.1 $$\Z/3\Z$$ Not in database $6$ 6.0.2026120000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $6$ 6.0.2561743816875.1 $$\Z/3\Z \times \Z/3\Z$$ Not in database $6$ 6.0.369630000.7 $$\Z/6\Z$$ Not in database $9$ 9.1.1868544137608839000000.1 $$\Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/6\Z$$ Not in database $18$ 18.0.26784754489888488755784027000000000000.1 $$\Z/9\Z$$ Not in database $18$ 18.0.94269344243193716139663415053867000000000000.2 $$\Z/3\Z \times \Z/6\Z$$ Not in database $18$ 18.0.8267770635847508141434183957316928000000000000.2 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.