Properties

Label 182182bp
Number of curves $4$
Conductor $182182$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 182182bp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 182182bp do not have complex multiplication.

Modular form 182182.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - q^{8} - 3 q^{9} - 2 q^{10} + q^{11} + q^{16} - 2 q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 182182bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
182182.p4 182182bp1 \([1, -1, 0, -30536, 67569984]\) \(-5545233/3469312\) \(-1970115610536865792\) \([2]\) \(2654208\) \(2.1895\) \(\Gamma_0(N)\)-optimal
182182.p3 182182bp2 \([1, -1, 0, -2680456, 1671831552]\) \(3750606459153/45914176\) \(26073248783198833216\) \([2, 2]\) \(5308416\) \(2.5360\)  
182182.p1 182182bp3 \([1, -1, 0, -42760496, 107635441304]\) \(15226621995131793/2324168\) \(1319823543777626888\) \([2]\) \(10616832\) \(2.8826\)  
182182.p2 182182bp4 \([1, -1, 0, -4999136, -1650836888]\) \(24331017010833/12004097336\) \(6816757775621680662776\) \([2]\) \(10616832\) \(2.8826\)