Properties

Label 18176r
Number of curves $3$
Conductor $18176$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 18176r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(71\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 18176r do not have complex multiplication.

Modular form 18176.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + 3 q^{7} - 2 q^{9} + q^{13} + 2 q^{15} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 18176r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18176.e3 18176r1 \([0, -1, 0, -959, -11117]\) \(190705121216/71\) \(36352\) \([]\) \(2944\) \(0.22650\) \(\Gamma_0(N)\)-optimal
18176.e2 18176r2 \([0, -1, 0, -4319, 100435]\) \(17406197775296/1804229351\) \(923765427712\) \([]\) \(14720\) \(1.0312\)  
18176.e1 18176r3 \([0, -1, 0, -2628479, 1641106963]\) \(3922540634246430781376/71\) \(36352\) \([]\) \(73600\) \(1.8359\)