Show commands: SageMath
Rank
The elliptic curves in class 18176r have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 18176r do not have complex multiplication.Modular form 18176.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 18176r
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 18176.e3 | 18176r1 | \([0, -1, 0, -959, -11117]\) | \(190705121216/71\) | \(36352\) | \([]\) | \(2944\) | \(0.22650\) | \(\Gamma_0(N)\)-optimal |
| 18176.e2 | 18176r2 | \([0, -1, 0, -4319, 100435]\) | \(17406197775296/1804229351\) | \(923765427712\) | \([]\) | \(14720\) | \(1.0312\) | |
| 18176.e1 | 18176r3 | \([0, -1, 0, -2628479, 1641106963]\) | \(3922540634246430781376/71\) | \(36352\) | \([]\) | \(73600\) | \(1.8359\) |