Properties

Label 18150.bi
Number of curves $4$
Conductor $18150$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 18150.bi have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 18150.bi do not have complex multiplication.

Modular form 18150.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + q^{12} + 2 q^{13} + q^{16} - 2 q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 18150.bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18150.bi1 18150y3 \([1, 0, 1, -12594651, -13157606552]\) \(7981893677157049/1917731420550\) \(53084034267515289843750\) \([2]\) \(1843200\) \(3.0717\)  
18150.bi2 18150y2 \([1, 0, 1, -4275901, 3230330948]\) \(312341975961049/17862322500\) \(494440529850351562500\) \([2, 2]\) \(921600\) \(2.7251\)  
18150.bi3 18150y1 \([1, 0, 1, -4215401, 3330881948]\) \(299270638153369/1069200\) \(29596140956250000\) \([2]\) \(460800\) \(2.3785\) \(\Gamma_0(N)\)-optimal
18150.bi4 18150y4 \([1, 0, 1, 3074849, 13183246448]\) \(116149984977671/2779502343750\) \(-76938405493688964843750\) \([2]\) \(1843200\) \(3.0717\)