Properties

Label 181350.b
Number of curves $4$
Conductor $181350$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 181350.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(31\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 181350.b do not have complex multiplication.

Modular form 181350.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 4 q^{7} - q^{8} - 4 q^{11} + q^{13} + 4 q^{14} + q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 181350.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
181350.b1 181350dh3 \([1, -1, 0, -52228917, 145296006241]\) \(1383277217333832812809/27202500\) \(309853476562500\) \([2]\) \(9437184\) \(2.7657\)  
181350.b2 181350dh2 \([1, -1, 0, -3264417, 2270701741]\) \(337748263783145929/47358464400\) \(539442508556250000\) \([2, 2]\) \(4718592\) \(2.4191\)  
181350.b3 181350dh4 \([1, -1, 0, -2971917, 2693949241]\) \(-254850956966062729/127607200177860\) \(-1453525764525936562500\) \([2]\) \(9437184\) \(2.7657\)  
181350.b4 181350dh1 \([1, -1, 0, -222417, 28747741]\) \(106827039259849/30599112960\) \(348543021060000000\) \([2]\) \(2359296\) \(2.0726\) \(\Gamma_0(N)\)-optimal