Properties

Label 179536bl
Number of curves $1$
Conductor $179536$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 179536bl1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(229\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 179536bl do not have complex multiplication.

Modular form 179536.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 4 q^{5} + q^{9} - 3 q^{11} + q^{13} + 8 q^{15} + 8 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 179536bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
179536.bk1 179536bl1 \([0, -1, 0, -13736, -632512]\) \(-2379293284/78547\) \(-9462759427072\) \([]\) \(672768\) \(1.2646\) \(\Gamma_0(N)\)-optimal