Properties

Label 178752by
Number of curves $1$
Conductor $178752$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 178752by1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 178752by do not have complex multiplication.

Modular form 178752.2.a.by

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - q^{11} - 6 q^{13} + q^{15} - 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 178752by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178752.ir1 178752by1 \([0, 1, 0, -1373144705, 19587723342207]\) \(-3866805342966045361/737311113216\) \(-54597291945795725763280896\) \([]\) \(75866112\) \(3.9394\) \(\Gamma_0(N)\)-optimal