Properties

Label 178752.fe
Number of curves $2$
Conductor $178752$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fe1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 178752.fe have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 178752.fe do not have complex multiplication.

Modular form 178752.2.a.fe

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} + q^{9} - 2 q^{11} + 4 q^{13} - 4 q^{15} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 178752.fe

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178752.fe1 178752fp2 \([0, -1, 0, -1461441, 501314913]\) \(11192824869409/2963890503\) \(91409286112856506368\) \([2]\) \(8257536\) \(2.5387\)  
178752.fe2 178752fp1 \([0, -1, 0, -1351681, 605257633]\) \(8855610342769/1008273\) \(31096126879039488\) \([2]\) \(4128768\) \(2.1921\) \(\Gamma_0(N)\)-optimal