Properties

Label 178464.bq
Number of curves $4$
Conductor $178464$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 178464.bq have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 178464.bq do not have complex multiplication.

Modular form 178464.2.a.bq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} + q^{11} - 2 q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 178464.bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178464.bq1 178464e2 \([0, 1, 0, -53003864, 148510701756]\) \(6663712298552914184/29403\) \(72664404493824\) \([2]\) \(8847360\) \(2.7463\)  
178464.bq2 178464e4 \([0, 1, 0, -3518129, 2015554815]\) \(243578556889408/52089208083\) \(1029835400715866714112\) \([2]\) \(8847360\) \(2.7463\)  
178464.bq3 178464e1 \([0, 1, 0, -3312794, 2319573816]\) \(13015685560572352/864536409\) \(267068935666488384\) \([2, 2]\) \(4423680\) \(2.3997\) \(\Gamma_0(N)\)-optimal
178464.bq4 178464e3 \([0, 1, 0, -3108304, 2618619992]\) \(-1343891598641864/421900912521\) \(-1042654782292262650368\) \([2]\) \(8847360\) \(2.7463\)