Properties

Label 17787l
Number of curves $1$
Conductor $17787$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 17787l1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17787l do not have complex multiplication.

Modular form 17787.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} + 3 q^{5} + 2 q^{6} + q^{9} - 6 q^{10} - 2 q^{12} + 4 q^{13} - 3 q^{15} - 4 q^{16} - q^{17} - 2 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 17787l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17787.c1 17787l1 \([0, -1, 1, -13834, 249402]\) \(495616/243\) \(143568569901141\) \([]\) \(107520\) \(1.4098\) \(\Gamma_0(N)\)-optimal