Properties

Label 177450z
Number of curves $1$
Conductor $177450$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 177450z1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 177450z do not have complex multiplication.

Modular form 177450.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} + q^{7} + q^{8} + q^{9} - 2 q^{11} + q^{12} + q^{14} + q^{16} + 6 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 177450z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
177450.js1 177450z1 \([1, 0, 0, -31353, -6761223]\) \(-167137945/870912\) \(-17760741842188800\) \([]\) \(1516320\) \(1.8022\) \(\Gamma_0(N)\)-optimal