Properties

Label 176400hr
Number of curves $2$
Conductor $176400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 176400hr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 176400hr do not have complex multiplication.

Modular form 176400.2.a.hr

Copy content sage:E.q_eigenform(10)
 
\(q - 5 q^{13} - 6 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 176400hr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176400.ig1 176400hr1 \([0, 0, 0, -158851875, 772356681250]\) \(-2637114025/6912\) \(-1161918239569920000000000\) \([]\) \(34836480\) \(3.4931\) \(\Gamma_0(N)\)-optimal
176400.ig2 176400hr2 \([0, 0, 0, 304198125, 3926190231250]\) \(18519167975/50331648\) \(-8460830416494919680000000000\) \([]\) \(104509440\) \(4.0424\)