Properties

Label 17575d
Number of curves $1$
Conductor $17575$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 17575d1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(19\)\(1 - T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17575d do not have complex multiplication.

Modular form 17575.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} - 2 q^{4} + q^{7} + 6 q^{9} + 3 q^{11} + 6 q^{12} - 6 q^{13} + 4 q^{16} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 17575d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17575.a1 17575d1 \([0, 0, 1, -18400, 132156]\) \(44091731607552/25033168477\) \(391143257453125\) \([]\) \(92160\) \(1.4899\) \(\Gamma_0(N)\)-optimal