Properties

Label 17472.bg
Number of curves $4$
Conductor $17472$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 17472.bg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17472.bg do not have complex multiplication.

Modular form 17472.2.a.bg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} - q^{7} + q^{9} + 4 q^{11} - q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 17472.bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17472.bg1 17472a3 \([0, -1, 0, -125217, 17093025]\) \(828279937799497/193444524\) \(50710321299456\) \([2]\) \(73728\) \(1.6204\)  
17472.bg2 17472a2 \([0, -1, 0, -8737, 203425]\) \(281397674377/96589584\) \(25320379908096\) \([2, 2]\) \(36864\) \(1.2738\)  
17472.bg3 17472a1 \([0, -1, 0, -3617, -80223]\) \(19968681097/628992\) \(164886478848\) \([2]\) \(18432\) \(0.92722\) \(\Gamma_0(N)\)-optimal
17472.bg4 17472a4 \([0, -1, 0, 25823, 1385377]\) \(7264187703863/7406095788\) \(-1941463574249472\) \([2]\) \(73728\) \(1.6204\)