Properties

Label 1734.d
Number of curves $4$
Conductor $1734$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1734.d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1734.d do not have complex multiplication.

Modular form 1734.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 2 q^{5} + q^{6} + 2 q^{7} - q^{8} + q^{9} - 2 q^{10} - q^{12} - 6 q^{13} - 2 q^{14} - 2 q^{15} + q^{16} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1734.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1734.d1 1734c4 \([1, 1, 0, -21094, -1153910]\) \(211293405175481/6973568802\) \(34261143524226\) \([2]\) \(6400\) \(1.3703\)  
1734.d2 1734c3 \([1, 1, 0, -20924, -1173732]\) \(206226044828441/236196\) \(1160430948\) \([2]\) \(3200\) \(1.0237\)  
1734.d3 1734c2 \([1, 1, 0, -2904, 59040]\) \(551569744601/2592\) \(12734496\) \([2]\) \(1280\) \(0.56554\)  
1734.d4 1734c1 \([1, 1, 0, -184, 832]\) \(141420761/9216\) \(45278208\) \([2]\) \(640\) \(0.21897\) \(\Gamma_0(N)\)-optimal