| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 1734.a1 |
1734d1 |
1734.a |
1734d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3 \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4284$ |
$1.064287$ |
$5831/384$ |
$1.01027$ |
$4.83526$ |
$[1, 1, 0, 717, -78099]$ |
\(y^2+xy=x^3+x^2+717x-78099\) |
24.2.0.b.1 |
$[ ]$ |
$1$ |
| 1734.b1 |
1734b3 |
1734.b |
1734b |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$4.005905973$ |
$1$ |
|
$3$ |
$20736$ |
$2.058033$ |
$46753267515625/11591221248$ |
$1.08666$ |
$6.49959$ |
$[1, 1, 0, -216900, -29485872]$ |
\(y^2+xy=x^3+x^2-216900x-29485872\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 8.6.0.d.1, 24.48.0-24.bx.1.6, $\ldots$ |
$[(1896, 78924)]$ |
$1$ |
| 1734.b2 |
1734b1 |
1734.b |
1734b |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$1.335301991$ |
$1$ |
|
$7$ |
$6912$ |
$1.508726$ |
$1845026709625/793152$ |
$1.00293$ |
$6.06619$ |
$[1, 1, 0, -73845, 7690221]$ |
\(y^2+xy=x^3+x^2-73845x+7690221\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 8.6.0.d.1, 24.48.0-24.bx.1.2, $\ldots$ |
$[(162, 27)]$ |
$1$ |
| 1734.b3 |
1734b2 |
1734.b |
1734b |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{12} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$2.670603982$ |
$1$ |
|
$4$ |
$13824$ |
$1.855301$ |
$-1107111813625/1228691592$ |
$1.01884$ |
$6.14129$ |
$[1, 1, 0, -62285, 10194117]$ |
\(y^2+xy=x^3+x^2-62285x+10194117\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.11, $\ldots$ |
$[(-127, 4073)]$ |
$1$ |
| 1734.b4 |
1734b4 |
1734.b |
1734b |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 17^{12} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$8.011811947$ |
$1$ |
|
$0$ |
$41472$ |
$2.404606$ |
$655215969476375/1001033261568$ |
$1.05358$ |
$6.91991$ |
$[1, 1, 0, 522940, -186183984]$ |
\(y^2+xy=x^3+x^2+522940x-186183984\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.5, $\ldots$ |
$[(7295/2, 654223/2)]$ |
$1$ |
| 1734.c1 |
1734a2 |
1734.c |
1734a |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{18} \cdot 3 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$306$ |
$48$ |
$0$ |
$1.594651815$ |
$1$ |
|
$2$ |
$648$ |
$0.331924$ |
$-4999353625/786432$ |
$1.12790$ |
$3.78637$ |
$[1, 1, 0, -235, -1667]$ |
\(y^2+xy=x^3+x^2-235x-1667\) |
3.4.0.a.1, 6.8.0.b.1, 18.24.0.c.1, 51.8.0-3.a.1.1, 102.16.0.?, $\ldots$ |
$[(102, 973)]$ |
$1$ |
| 1734.c2 |
1734a1 |
1734.c |
1734a |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$102$ |
$48$ |
$0$ |
$0.531550605$ |
$1$ |
|
$4$ |
$216$ |
$-0.217382$ |
$2828375/1728$ |
$1.02006$ |
$2.75156$ |
$[1, 1, 0, 20, 16]$ |
\(y^2+xy=x^3+x^2+20x+16\) |
3.4.0.a.1, 6.24.0.c.1, 51.8.0-3.a.1.2, 102.48.0.? |
$[(0, 4)]$ |
$1$ |
| 1734.d1 |
1734c4 |
1734.d |
1734c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2 \cdot 3^{20} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$5.459481698$ |
$1$ |
|
$2$ |
$6400$ |
$1.370260$ |
$211293405175481/6973568802$ |
$1.13518$ |
$5.56220$ |
$[1, 1, 0, -21094, -1153910]$ |
\(y^2+xy=x^3+x^2-21094x-1153910\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.18.0.a.1, 20.36.0.b.2, $\ldots$ |
$[(885, 25525)]$ |
$1$ |
| 1734.d2 |
1734c3 |
1734.d |
1734c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{10} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$2.729740849$ |
$1$ |
|
$3$ |
$3200$ |
$1.023687$ |
$206226044828441/236196$ |
$1.07449$ |
$5.55894$ |
$[1, 1, 0, -20924, -1173732]$ |
\(y^2+xy=x^3+x^2-20924x-1173732\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.36.0.b.1, 34.6.0.a.1, $\ldots$ |
$[(254, 3032)]$ |
$1$ |
| 1734.d3 |
1734c2 |
1734.d |
1734c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{5} \cdot 3^{4} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$1.091896339$ |
$1$ |
|
$6$ |
$1280$ |
$0.565541$ |
$551569744601/2592$ |
$1.20056$ |
$4.76465$ |
$[1, 1, 0, -2904, 59040]$ |
\(y^2+xy=x^3+x^2-2904x+59040\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.18.0.a.1, 20.36.0.b.1, $\ldots$ |
$[(33, 6)]$ |
$1$ |
| 1734.d4 |
1734c1 |
1734.d |
1734c |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$0.545948169$ |
$1$ |
|
$7$ |
$640$ |
$0.218968$ |
$141420761/9216$ |
$0.99890$ |
$3.65597$ |
$[1, 1, 0, -184, 832]$ |
\(y^2+xy=x^3+x^2-184x+832\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.36.0.b.2, 34.6.0.a.1, $\ldots$ |
$[(1, 25)]$ |
$1$ |
| 1734.e1 |
1734f4 |
1734.e |
1734f |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2 \cdot 3^{20} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$108800$ |
$2.786869$ |
$211293405175481/6973568802$ |
$1.13518$ |
$7.84148$ |
$[1, 0, 1, -6096317, -5626485970]$ |
\(y^2+xy+y=x^3-6096317x-5626485970\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.18.0.a.1, 20.36.0.b.2, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.e2 |
1734f3 |
1734.e |
1734f |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{10} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$54400$ |
$2.440292$ |
$206226044828441/236196$ |
$1.07449$ |
$7.83822$ |
$[1, 0, 1, -6047187, -5724215366]$ |
\(y^2+xy+y=x^3-6047187x-5724215366\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.36.0.b.1, 34.6.0.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.e3 |
1734f2 |
1734.e |
1734f |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{5} \cdot 3^{4} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$21760$ |
$1.982149$ |
$551569744601/2592$ |
$1.20056$ |
$7.04393$ |
$[1, 0, 1, -839407, 295939010]$ |
\(y^2+xy+y=x^3-839407x+295939010\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.18.0.a.1, 20.36.0.b.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.e4 |
1734f1 |
1734.e |
1734f |
$4$ |
$10$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 5$ |
8.6.0.2, 5.6.0.1 |
2B, 5B |
$680$ |
$288$ |
$5$ |
$1$ |
$1$ |
|
$1$ |
$10880$ |
$1.635574$ |
$141420761/9216$ |
$0.99890$ |
$5.93525$ |
$[1, 0, 1, -53327, 4460546]$ |
\(y^2+xy+y=x^3-53327x+4460546\) |
2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.36.0.b.2, 34.6.0.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.f1 |
1734h2 |
1734.f |
1734h |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{18} \cdot 3 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$18$ |
$48$ |
$0$ |
$8.515182834$ |
$1$ |
|
$0$ |
$11016$ |
$1.748531$ |
$-4999353625/786432$ |
$1.12790$ |
$6.06565$ |
$[1, 0, 1, -68066, -7713868]$ |
\(y^2+xy+y=x^3-68066x-7713868\) |
3.8.0-3.a.1.1, 6.16.0-6.b.1.1, 18.48.0-18.c.1.1 |
$[(109061/5, 35678901/5)]$ |
$1$ |
| 1734.f2 |
1734h1 |
1734.f |
1734h |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 17^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$6$ |
$48$ |
$0$ |
$2.838394278$ |
$1$ |
|
$6$ |
$3672$ |
$1.199224$ |
$2828375/1728$ |
$1.02006$ |
$5.03084$ |
$[1, 0, 1, 5629, 38846]$ |
\(y^2+xy+y=x^3+5629x+38846\) |
3.8.0-3.a.1.2, 6.48.0-6.c.1.2 |
$[(39, 544)]$ |
$1$ |
| 1734.g1 |
1734e1 |
1734.g |
1734e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$252$ |
$-0.352319$ |
$5831/384$ |
$1.01027$ |
$2.55598$ |
$[1, 0, 1, 2, -16]$ |
\(y^2+xy+y=x^3+2x-16\) |
24.2.0.b.1 |
$[ ]$ |
$1$ |
| 1734.h1 |
1734g1 |
1734.h |
1734g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2304$ |
$0.653078$ |
$1771561/612$ |
$1.28490$ |
$4.20835$ |
$[1, 0, 1, -729, 4744]$ |
\(y^2+xy+y=x^3-729x+4744\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[ ]$ |
$1$ |
| 1734.h2 |
1734g2 |
1734.h |
1734g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2 \cdot 3^{4} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4608$ |
$0.999652$ |
$46268279/46818$ |
$0.94894$ |
$4.64580$ |
$[1, 0, 1, 2161, 33644]$ |
\(y^2+xy+y=x^3+2161x+33644\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[ ]$ |
$1$ |
| 1734.i1 |
1734k1 |
1734.i |
1734k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3 \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8568$ |
$1.248198$ |
$-289/12$ |
$1.03664$ |
$5.13337$ |
$[1, 1, 1, -1740, 237561]$ |
\(y^2+xy+y=x^3+x^2-1740x+237561\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 1734.j1 |
1734i5 |
1734.j |
1734i |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2 \cdot 3^{2} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.271 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$16$ |
$2$ |
$0$ |
$36864$ |
$2.263683$ |
$2361739090258884097/5202$ |
$1.06083$ |
$7.95169$ |
$[1, 1, 1, -8018022, -8742084111]$ |
\(y^2+xy+y=x^3+x^2-8018022x-8742084111\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.r.1.3, 16.96.0-16.l.2.5, 68.12.0-4.c.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.j2 |
1734i3 |
1734.j |
1734i |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{4} \cdot 17^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.152 |
2Cs |
$136$ |
$192$ |
$1$ |
$1$ |
$16$ |
$2$ |
$2$ |
$18432$ |
$1.917110$ |
$576615941610337/27060804$ |
$1.03156$ |
$6.83644$ |
$[1, 1, 1, -501132, -136748439]$ |
\(y^2+xy+y=x^3+x^2-501132x-136748439\) |
2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.e.1.2, 68.24.0-4.b.1.1, 136.192.1.? |
$[ ]$ |
$1$ |
| 1734.j3 |
1734i6 |
1734.j |
1734i |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2 \cdot 3^{2} \cdot 17^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.275 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$16$ |
$2$ |
$0$ |
$36864$ |
$2.263683$ |
$-491411892194497/125563633938$ |
$1.03624$ |
$6.86404$ |
$[1, 1, 1, -475122, -151542927]$ |
\(y^2+xy+y=x^3+x^2-475122x-151542927\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.2, 16.96.0-8.m.2.2, 68.12.0-4.c.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.j4 |
1734i2 |
1734.j |
1734i |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.19 |
2Cs |
$136$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$2$ |
$9216$ |
$1.570538$ |
$163936758817/30338064$ |
$1.07571$ |
$5.74161$ |
$[1, 1, 1, -32952, -1912599]$ |
\(y^2+xy+y=x^3+x^2-32952x-1912599\) |
2.6.0.a.1, 4.24.0-4.b.1.2, 8.96.0-8.h.2.5, 68.48.0-68.c.1.4, 136.192.1.? |
$[ ]$ |
$1$ |
| 1734.j5 |
1734i1 |
1734.j |
1734i |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 17^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.117 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$4608$ |
$1.223965$ |
$4354703137/352512$ |
$1.05192$ |
$5.25514$ |
$[1, 1, 1, -9832, 343913]$ |
\(y^2+xy+y=x^3+x^2-9832x+343913\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.1.8, 16.96.0-16.bb.1.8, 34.6.0.a.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.j6 |
1734i4 |
1734.j |
1734i |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{16} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.171 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$18432$ |
$1.917110$ |
$1276229915423/2927177028$ |
$1.03010$ |
$6.16243$ |
$[1, 1, 1, 65308, -11031127]$ |
\(y^2+xy+y=x^3+x^2+65308x-11031127\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.ba.2.3, 16.96.0-16.y.2.3, 68.24.0-68.h.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.k1 |
1734j2 |
1734.k |
1734j |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.9 |
3B |
$1224$ |
$144$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$6804$ |
$1.202545$ |
$-843137281012581793/216$ |
$1.08401$ |
$6.29407$ |
$[1, 1, 1, -130124, -18121147]$ |
\(y^2+xy+y=x^3+x^2-130124x-18121147\) |
3.4.0.a.1, 9.36.0.f.1, 24.8.0.d.1, 51.8.0-3.a.1.1, 72.72.2.?, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.k2 |
1734j1 |
1734.k |
1734j |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.7 |
3B |
$1224$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2268$ |
$0.653239$ |
$-1579268174113/10077696$ |
$1.03714$ |
$4.52729$ |
$[1, 1, 1, -1604, -25531]$ |
\(y^2+xy+y=x^3+x^2-1604x-25531\) |
3.4.0.a.1, 9.36.0.f.2, 24.8.0.d.1, 51.8.0-3.a.1.2, 72.72.2.?, $\ldots$ |
$[ ]$ |
$1$ |
| 1734.l1 |
1734l2 |
1734.l |
1734l |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.16 |
3B.1.2 |
$72$ |
$144$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$115668$ |
$2.619152$ |
$-843137281012581793/216$ |
$1.08401$ |
$8.57335$ |
$[1, 0, 0, -37605842, -88765953444]$ |
\(y^2+xy=x^3-37605842x-88765953444\) |
3.8.0-3.a.1.1, 9.72.0-9.f.1.2, 24.16.0-24.d.1.7, 72.144.2.? |
$[ ]$ |
$1$ |
| 1734.l2 |
1734l1 |
1734.l |
1734l |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 17^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.8 |
3B.1.1 |
$72$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$2$ |
$38556$ |
$2.069847$ |
$-1579268174113/10077696$ |
$1.03714$ |
$6.80657$ |
$[1, 0, 0, -463562, -122187996]$ |
\(y^2+xy=x^3-463562x-122187996\) |
3.8.0-3.a.1.2, 9.72.0-9.f.2.2, 24.16.0-24.d.1.8, 72.144.2.? |
$[ ]$ |
$1$ |
| 1734.m1 |
1734m1 |
1734.m |
1734m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3 \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$504$ |
$-0.168409$ |
$-289/12$ |
$1.03664$ |
$2.85409$ |
$[1, 0, 0, -6, 48]$ |
\(y^2+xy=x^3-6x+48\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |