sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 17280.c1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1−5T+11T2 |
1.11.af
|
13 |
1+3T+13T2 |
1.13.d
|
17 |
1−3T+17T2 |
1.17.ad
|
19 |
1+19T2 |
1.19.a
|
23 |
1−T+23T2 |
1.23.ab
|
29 |
1−7T+29T2 |
1.29.ah
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 17280.c do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 17280.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
17280.c1 |
17280o1 |
[0,0,0,−3348,−77328] |
−2859936/125 |
−181398528000 |
[] |
24192 |
0.92568
|
Γ0(N)-optimal |