Properties

Label 172480gs
Number of curves $2$
Conductor $172480$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 172480gs have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 172480gs do not have complex multiplication.

Modular form 172480.2.a.gs

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{9} + q^{11} + 2 q^{13} - q^{15} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 172480gs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
172480.fl1 172480gs1 \([0, 1, 0, -3201, -191521]\) \(-117649/440\) \(-13570030960640\) \([]\) \(290304\) \(1.2056\) \(\Gamma_0(N)\)-optimal
172480.fl2 172480gs2 \([0, 1, 0, 28159, 4531295]\) \(80062991/332750\) \(-10262335913984000\) \([]\) \(870912\) \(1.7549\)