Properties

Label 172380s
Number of curves $2$
Conductor $172380$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 172380s have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 172380s do not have complex multiplication.

Modular form 172380.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{7} + q^{9} - 2 q^{11} - q^{15} - q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 172380s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
172380.j1 172380s1 \([0, -1, 0, -11296185, -14601043458]\) \(2064139491706322944/1374181453125\) \(106126582489229250000\) \([2]\) \(7741440\) \(2.7814\) \(\Gamma_0(N)\)-optimal
172380.j2 172380s2 \([0, -1, 0, -9098340, -20455223400]\) \(-67407802159923664/107316650390625\) \(-132607225332562500000000\) \([2]\) \(15482880\) \(3.1280\)