Properties

Label 172062bt
Number of curves $2$
Conductor $172062$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 172062bt have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 172062bt do not have complex multiplication.

Modular form 172062.2.a.bt

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - 4 q^{7} - q^{8} - 2 q^{10} - 4 q^{13} + 4 q^{14} + q^{16} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 172062bt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
172062.r1 172062bt1 \([1, -1, 0, -515301, 142478485]\) \(316364152169619/70298624\) \(3362534117065728\) \([2]\) \(2265600\) \(1.9724\) \(\Gamma_0(N)\)-optimal
172062.r2 172062bt2 \([1, -1, 0, -457221, 175781557]\) \(-220995219282579/150814713632\) \(-7213791552208727904\) \([2]\) \(4531200\) \(2.3190\)