Properties

Label 172062.p
Number of curves $1$
Conductor $172062$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 172062.p1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 172062.p do not have complex multiplication.

Modular form 172062.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} + q^{13} + q^{16} + 4 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 172062.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
172062.p1 172062bi1 \([1, -1, 0, -140949, 45474061]\) \(-319158090842219/734549247144\) \(-712732399954576056\) \([]\) \(2495232\) \(2.1141\) \(\Gamma_0(N)\)-optimal