Show commands: SageMath
Rank
The elliptic curves in class 1710j have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 1710j do not have complex multiplication.Modular form 1710.2.a.j
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1710j
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1710.j3 | 1710j1 | \([1, -1, 0, -232839, -43583427]\) | \(-1914980734749238129/20440940544000\) | \(-14901445656576000\) | \([2]\) | \(23040\) | \(1.9198\) | \(\Gamma_0(N)\)-optimal |
1710.j2 | 1710j2 | \([1, -1, 0, -3734919, -2777307075]\) | \(7903870428425797297009/886464000000\) | \(646232256000000\) | \([2]\) | \(46080\) | \(2.2664\) | |
1710.j4 | 1710j3 | \([1, -1, 0, 769401, -227366595]\) | \(69096190760262356111/70568821500000000\) | \(-51444670873500000000\) | \([6]\) | \(69120\) | \(2.4691\) | |
1710.j1 | 1710j4 | \([1, -1, 0, -4169079, -2091148947]\) | \(10993009831928446009969/3767761230468750000\) | \(2746697937011718750000\) | \([6]\) | \(138240\) | \(2.8157\) |