Learn more

Refine search


Results (1-50 of 54 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1710.a1 1710.a \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.707986895$ $[1, -1, 0, -4875, -128539]$ \(y^2+xy=x^3-x^2-4875x-128539\)
1710.a2 1710.a \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.853993447$ $[1, -1, 0, -555, 1925]$ \(y^2+xy=x^3-x^2-555x+1925\)
1710.b1 1710.b \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -475411005, 3989926514025]$ \(y^2+xy=x^3-x^2-475411005x+3989926514025\)
1710.b2 1710.b \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -29713185, 62348184621]$ \(y^2+xy=x^3-x^2-29713185x+62348184621\)
1710.b3 1710.b \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -791505, 233711325]$ \(y^2+xy=x^3-x^2-791505x+233711325\)
1710.b4 1710.b \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 84015, 19909341]$ \(y^2+xy=x^3-x^2+84015x+19909341\)
1710.c1 1710.c \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.245610612$ $[1, -1, 0, -270, 1750]$ \(y^2+xy=x^3-x^2-270x+1750\)
1710.c2 1710.c \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.491221225$ $[1, -1, 0, 0, 76]$ \(y^2+xy=x^3-x^2+76\)
1710.d1 1710.d \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/3\Z$ $2.228136189$ $[1, -1, 0, -25020, 1529550]$ \(y^2+xy=x^3-x^2-25020x+1529550\)
1710.d2 1710.d \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.742712063$ $[1, -1, 0, -270, 2700]$ \(y^2+xy=x^3-x^2-270x+2700\)
1710.e1 1710.e \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $10.72727366$ $[1, -1, 0, -4432320, -3590548484]$ \(y^2+xy=x^3-x^2-4432320x-3590548484\)
1710.e2 1710.e \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $2.681818415$ $[1, -1, 0, -280440, -54592700]$ \(y^2+xy=x^3-x^2-280440x-54592700\)
1710.e3 1710.e \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.363636831$ $[1, -1, 0, -277020, -56050304]$ \(y^2+xy=x^3-x^2-277020x-56050304\)
1710.e4 1710.e \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $2.681818415$ $[1, -1, 0, -17100, -895280]$ \(y^2+xy=x^3-x^2-17100x-895280\)
1710.f1 1710.f \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -27360, -1735074]$ \(y^2+xy=x^3-x^2-27360x-1735074\)
1710.f2 1710.f \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1980, -17550]$ \(y^2+xy=x^3-x^2-1980x-17550\)
1710.f3 1710.f \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -1710, -26784]$ \(y^2+xy=x^3-x^2-1710x-26784\)
1710.f4 1710.f \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -90, -540]$ \(y^2+xy=x^3-x^2-90x-540\)
1710.g1 1710.g \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -429, -3547]$ \(y^2+xy=x^3-x^2-429x-3547\)
1710.h1 1710.h \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.418160269$ $[1, -1, 0, -399, 1805]$ \(y^2+xy=x^3-x^2-399x+1805\)
1710.h2 1710.h \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.836320539$ $[1, -1, 0, 81, 173]$ \(y^2+xy=x^3-x^2+81x+173\)
1710.i1 1710.i \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.242449802$ $[1, -1, 0, -5589, 161995]$ \(y^2+xy=x^3-x^2-5589x+161995\)
1710.i2 1710.i \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.484899605$ $[1, -1, 0, -459, 913]$ \(y^2+xy=x^3-x^2-459x+913\)
1710.i3 1710.i \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.969799210$ $[1, -1, 0, -279, -1715]$ \(y^2+xy=x^3-x^2-279x-1715\)
1710.i4 1710.i \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.969799210$ $[1, -1, 0, 1791, 5863]$ \(y^2+xy=x^3-x^2+1791x+5863\)
1710.j1 1710.j \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, -4169079, -2091148947]$ \(y^2+xy=x^3-x^2-4169079x-2091148947\)
1710.j2 1710.j \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3734919, -2777307075]$ \(y^2+xy=x^3-x^2-3734919x-2777307075\)
1710.j3 1710.j \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -232839, -43583427]$ \(y^2+xy=x^3-x^2-232839x-43583427\)
1710.j4 1710.j \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, 769401, -227366595]$ \(y^2+xy=x^3-x^2+769401x-227366595\)
1710.k1 1710.k \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -209934, 37075590]$ \(y^2+xy=x^3-x^2-209934x+37075590\)
1710.k2 1710.k \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -13104, 583308]$ \(y^2+xy=x^3-x^2-13104x+583308\)
1710.l1 1710.l \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.534795853$ $[1, -1, 1, -8708, 314867]$ \(y^2+xy+y=x^3-x^2-8708x+314867\)
1710.l2 1710.l \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.534795853$ $[1, -1, 1, -4028, -94669]$ \(y^2+xy+y=x^3-x^2-4028x-94669\)
1710.l3 1710.l \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.767397926$ $[1, -1, 1, -608, 3827]$ \(y^2+xy+y=x^3-x^2-608x+3827\)
1710.l4 1710.l \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.383698963$ $[1, -1, 1, 112, 371]$ \(y^2+xy+y=x^3-x^2+112x+371\)
1710.m1 1710.m \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.295123944$ $[1, -1, 1, -3593, -45143]$ \(y^2+xy+y=x^3-x^2-3593x-45143\)
1710.m2 1710.m \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.590247888$ $[1, -1, 1, 727, -5399]$ \(y^2+xy+y=x^3-x^2+727x-5399\)
1710.n1 1710.n \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -3578, -81363]$ \(y^2+xy+y=x^3-x^2-3578x-81363\)
1710.n2 1710.n \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -158, -2019]$ \(y^2+xy+y=x^3-x^2-158x-2019\)
1710.o1 1710.o \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -67298, 6505697]$ \(y^2+xy+y=x^3-x^2-67298x+6505697\)
1710.o2 1710.o \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -9923, -375253]$ \(y^2+xy+y=x^3-x^2-9923x-375253\)
1710.o3 1710.o \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -203, -13669]$ \(y^2+xy+y=x^3-x^2-203x-13669\)
1710.o4 1710.o \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, 1822, 367841]$ \(y^2+xy+y=x^3-x^2+1822x+367841\)
1710.p1 1710.p \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.108207119$ $[1, -1, 1, -542, 4941]$ \(y^2+xy+y=x^3-x^2-542x+4941\)
1710.p2 1710.p \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.216414238$ $[1, -1, 1, -62, -51]$ \(y^2+xy+y=x^3-x^2-62x-51\)
1710.q1 1710.q \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.055865623$ $[1, -1, 1, -17987, 931011]$ \(y^2+xy+y=x^3-x^2-17987x+931011\)
1710.q2 1710.q \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.111731246$ $[1, -1, 1, -707, 25539]$ \(y^2+xy+y=x^3-x^2-707x+25539\)
1710.r1 1710.r \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 13, -39]$ \(y^2+xy+y=x^3-x^2+13x-39\)
1710.s1 1710.s \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -14567, -673041]$ \(y^2+xy+y=x^3-x^2-14567x-673041\)
1710.s2 1710.s \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -887, -10929]$ \(y^2+xy+y=x^3-x^2-887x-10929\)
Next   Download to